期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Microstructure and wear mechanisms of OCTG chasers
1
作者 WANG Minghua HE Shuwen 《Baosteel Technical Research》 CAS 2023年第2期29-36,共8页
The wear mechanism and tool life of four types of oil country tubular goods chasers are studied herein via metallographic microscopy,scanning electron microscopy,and energy dispersive spectroscopy.Results show that wh... The wear mechanism and tool life of four types of oil country tubular goods chasers are studied herein via metallographic microscopy,scanning electron microscopy,and energy dispersive spectroscopy.Results show that when the tool has a fine and uniform microstructure,the main failure mode is wear failure.Furthermore,observed phenomena including large chip bonding,coating peeling,cracks demonstrate that the main wear mechanisms of the tool are adhesive wear,abrasive wear,coating flaking,and microchipping. 展开更多
关键词 OCTG CHASER MICROSTRUCTURE wear mechanism
下载PDF
Wear Mechanism of WC-Co Cemented Carbide Tool in Cutting Ti-6Al-4V Based on Thermodynamics 被引量:2
2
作者 胡小龙 邵芳 WANG Renwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期973-979,共7页
In order to optimize the tool coating material and reduce the tool wear rate,the coating material and wear mechanism for carbide tools are proposed and analyzed based on thermodynamics theory.We deduced the Gibbs free... In order to optimize the tool coating material and reduce the tool wear rate,the coating material and wear mechanism for carbide tools are proposed and analyzed based on thermodynamics theory.We deduced the Gibbs free energy function method and analyzed the enthalpy value of the coating material of cemented carbide tools.The rules of diffusion wear and oxidation wear for WC-Co-based carbide tools were analyzed based on the diffusion dissolution theory and the calculation method of the thermal effect of chemical reaction.The diffusion wear and oxidation wear of WC-Co-based carbide tools when machining Ti-6Al-4V were studied with SEM-EDS.The results indicate that a good prediction accuracy of both diffusion wear and oxidation wear can be achieved by the method of thermodynamic theory analysis method.The conclusion will provide useful references for the optimization of cutting parameters and the improvement of the tool life. 展开更多
关键词 cemented carbide THERMODYNAMICS titanium alloy wear mechanism
下载PDF
A Review on Fretting Wear Mechanisms,Models and Numerical Analyses 被引量:1
3
作者 Tongyan Yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2019年第5期405-432,共28页
Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in component... Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in components supposed to move relative to each other.Fretting wear is a complicated problem involving material properties of tribosystem and working conditions of them.Due to these various factors,researchers have studied the process of fretting wear by experiments and numerical modelling methods.This paper reviews recent literature on the numerical modelling method of fretting wear.After a briefly introduction on the mechanism of fretting wear,numerical models,which are critical issues for fretting wear modelling,are reviewed.The paper is concluded by highlighting possible research topics for future work. 展开更多
关键词 Fretting wear wear models wear mechanisms numerical modelling
下载PDF
Effects of fiber orientation on tool wear evolution and wear mechanism when cutting carbon fiber reinforced plastics 被引量:1
4
作者 Weizhou WU Shipeng LI +5 位作者 Xuda QIN Wentao LIU Xin CUI Hao LI Mengrui SHI Haibao LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期549-565,共17页
The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite... The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite element(FE) cutting model of carbon fiber reinforced plastics(CFRP)is established to get insight into the cutting stress status at different wear stages. The results show that different fiber orientations bring about distinct differences in the extent, profile and mechanism of tool wear. Severer wear occurs when cutting 45° and 90° plies, followed by 0°, correspondingly,the least wear is obtained when θ = 135°(θ represents the orientation of fibers). Moreover, the worn profiles of cutting tools when θ = 0° and 45° are waterfall edge, while round edge occurs whenθ = 135° and a combined shape of waterfall and round edge is obtained when θ = 90°. The wear mechanisms under different fiber orientations are strongly dependent on the cutting stress distributions. The evolution of tool wear profile is basically consistent with the stress distribution on the tool surface at different wear stages, and the extent of tool wear is determined by the magnitude of stress on the tool surface. Besides, the worn edges produce an actual negative clearance angle,which decreases the actual cutting thickness and leads to compressing and bending failure of fibers beneath the cutting region as well as low surface qualities. 展开更多
关键词 Carbon fiber reinforced plastics(CFRP) Fiber orientation Finite element method(FEM) Tool wear wear mechanism
原文传递
High-temperature wear mechanisms of TiNbWN films:Role of nanocrystalline oxides formation
5
作者 Leilei CHEN Zhenyu ZHANG +5 位作者 Ming LOU Kai XU Lu WANG Fanning MENG Denis MUSIC Keke CHANG 《Friction》 SCIE EI CAS CSCD 2023年第3期460-472,共13页
Réfractory high/medium entropy nitrides(HENs/MENs)exhibit comprehensive application prospects as protective films on mechanical parts,particularly those subjected to sliding contacts at elevated temperatures.In t... Réfractory high/medium entropy nitrides(HENs/MENs)exhibit comprehensive application prospects as protective films on mechanical parts,particularly those subjected to sliding contacts at elevated temperatures.In this study,a new MEN system TiNbWN,forming a single fc solution,is designed and its wear performance at temperatures ranging from 25 to 750℃is explored.The wear mechanisms can be rationalized by examining the subsurface microstructural evolutions using the transmission electron microscopy as well as calculating the phase diagrams and interfacial adhesion behavior employing calculation of phase diagram(CALPHAD)and density functional theory(DFT).To be specific,increased wear losses occur in a temperature range of 25-600℃,being predominantly caused by the thermally-induced hardness degradation;whereas at the ultimate temperature(750℃),the wear loss is refrained due to the formation of nanocrystalline oxides(WnO_(3n-2r)TiO_(2),and TiOx),as synergistically revealed by microscopy and CALPHAD,which not only enhance the mechanical properties of the pristine nitride film,but also act as solid lubricants,reducing the interfacial adhesion.Thus,our work delineates the role of the in situ formed nanocrystalline oxides in the wear mechanism transition of TiNbWN thin films,which could shed light on the high-temperature wear behavior of refractory HEN/MENfilms. 展开更多
关键词 high/medium entropy nitrides(HENs/MENs) TiNbWN thin films wear mechanisms nanocrystalline oxides
原文传递
Wear mechanism and debris analysis of PEEK as an alternative to CoCrMo in the femoral component of total knee replacement
6
作者 Xinyue ZHANG Tao ZHANG +3 位作者 Kai CHEN Handong XU Cunao FENG Dekun ZHANG 《Friction》 SCIE EI CAS CSCD 2023年第10期1845-1861,共17页
The polyetheretherketone(PEEK)-highly cross-linked polyethylene(XLPE),all-polymer knee prosthesis has excellent prospects for replacing the traditional metal/ceramic-polyethylene joint prosthesis,improving the service... The polyetheretherketone(PEEK)-highly cross-linked polyethylene(XLPE),all-polymer knee prosthesis has excellent prospects for replacing the traditional metal/ceramic-polyethylene joint prosthesis,improving the service life of the joint prosthesis and the quality of patients’life.The long-term wear mechanism of PEEK-XLPE knee joint prosthesis is comprehensively evaluated from wear amount,wear morphology,and wear debris compared to that of CoCrMo-XLPE joint prosthesis.After 5 million cycles of in vitro wear,the wear loss of XLPE in PEEK-XLPE(30.9±3.2 mg)is lower than that of XLPE in CoCrMo-XLPE(32.1±3.1 mg).Compared to the XLPE in CoCrMo-XLPE,the plastic deformation of XLPE in PEEK-XLPE is more severe in the early stage,and the adhesive peeling and adhesion are lighter in the later stage.The size distribution of XLPE wear debris in PEEK-XLPE is relatively dispersed,which in CoCrMo-XLPE is relatively concentrated.Wear debris is mainly flake and block debris,and the wear mechanism of XLPE was abrasive wear.The wear volume per unit area of PEEK femoral condyle(10.45×10^(5)μm^(3)/mm^(2))is higher than that of CoCrMo(8.32×10^(5)μm^(3)/mm^(2)).The PEEK surface is mainly furrows and adhesions,while the CoCrMo surface is mainly furrows and corrosion spots.The PEEK wear debris is mainly in flakes and blocks,and the CoCrMo wear debris is mainly in the shape of rods and blocks.The wear mechanism of PEEK is abrasive wear and adhesion,and that of CoCrMo is abrasive wear and corrosion. 展开更多
关键词 polyetheretherketone(PEEK)-highly cross-linked polyethylene(XLPE) cobalt-chromium-molybdenum(CoCrMo)-XLPE wear debris wear mechanism
原文传递
Effect of Ni content on the wear behavior of Al-Si-Cu-Mg-Ni/SiC particles composites
7
作者 Yanyu Liu Lina Jia +2 位作者 Wenbo Wang Zuheng Jin Hu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期374-383,共10页
In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composi... In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃. 展开更多
关键词 Al matrix composite microstructure sliding test high temperature wear mechanism
下载PDF
Novel three-body nano-abrasive wear mechanism 被引量:2
8
作者 Ruling CHEN Shaoxian LI 《Friction》 SCIE EI CAS CSCD 2022年第5期677-687,共11页
Current three-body abrasive wear theories are based on a macroscale abrasive indentation process,and these theories claim that material wear cannot be achieved without damaging the hard mating surface.In this study,th... Current three-body abrasive wear theories are based on a macroscale abrasive indentation process,and these theories claim that material wear cannot be achieved without damaging the hard mating surface.In this study,the process of three-body nano-abrasive wear of a system including a single crystalline silicon substrate,an amorphous silica cluster,and a polyurethane pad,based on a chemical mechanical polishing(CMP)process,is investigated via molecular dynamics simulations.The cluster slid in a suspended state in smooth regions and underwent rolling impact in the asperity regions of the silicon surface,realizing non-damaging monoatomic material removal.This proves that indentation-plowing is not necessary when performing CMP material removal.Therefore,a non-indentation rolling-sliding adhesion theory for three-body nano-abrasive wear between ultrasoft/hard mating surfaces is proposed.This wear theory not only unifies current mainstream CMP material removal theories,but also clarifies that monoatomic material wear without damage can be realized when the indentation depth is less than zero,thereby perfecting the relationship between material wear and surface damage.These results provide new understanding regarding the CMP microscopic material removal mechanism as well as new research avenues for three-body abrasive wear theory at the monoatomic scale. 展开更多
关键词 wear mechanism material removal mechanism three-body abrasive wear chemical mechanical polishing(CMP) molecular dynamics simulation
原文传递
Wear mechanisms and hardness thresholds under repeated impact contact loading
9
作者 REN XiangHong ZHU JinHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第1期124-128,共5页
Experiments were performed on 20 different types of materials to analyze the impact contact wear and to establish the wear mechanism map. The wear mechanism has been categorized into three prominent regions(delaminati... Experiments were performed on 20 different types of materials to analyze the impact contact wear and to establish the wear mechanism map. The wear mechanism has been categorized into three prominent regions(delamination wear, quasi-nano wear and lamination-like wear) and is governed by two hardness thresholds(H_(dq) and H_(ql)). When the material hardness Hcp<H_(dq), the delamination wear is the dominant wear mechanism; when H_(cp)>H_(ql), the mechanism is lamination-like wear; however, when H_(cp) is between Hdq and H_(ql), the mechanism is determined to be quasi-nano wear. H_(dq) is determined to be the threshold hardness between delamination wear and quasi-nano wear that reflects the cracks being produced in the subsurface layer, whereas, H_(ql) is termed threshold hardness between quasi-nano wear and lamination-like wear with formation of nanostructure within the surface layer. 展开更多
关键词 wear mechanism impact wear HARDNESS delamination wear quasi-nano wear lamination-like wear
原文传递
Gaussian process regression model incorporated with tool wear mechanism
10
作者 Dehua LI Yingguang LI Changqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期393-400,共8页
Cutting tool condition directly affects machining quality and efficiency.In order to avoid severely worn tools used during machining process and fully release the remaining useful life in the meanwhile,a reliable eval... Cutting tool condition directly affects machining quality and efficiency.In order to avoid severely worn tools used during machining process and fully release the remaining useful life in the meanwhile,a reliable evaluation method of remaining useful life of cutting tools is quite necessary.Due to the variation of cutting conditions,it is a challenge to predict remaining useful life of cutting tools by a unified model.In order to address this issue,this paper proposes a method for predicting the remaining useful life of cutting tools in variable cutting conditions based on Gaussian process regression model incorporated with tool wear mechanism,where the predicted value at adjacent moments is constrained to a linear relationship by the covariance matrix of Gaussian model based on the assumption of progressive tool wear process,so the wear process under continuous changing conditions can be modelled.In addition to that,the input feature space and the output of the model are also enhanced by considering the tool wear mechanism for improving prediction accuracy.Machining experiments are performed to verify the proposed method,and the results show that the proposed could improve the prediction of tool remaining useful life significantly. 展开更多
关键词 Remaining useful life Cutting condition Tool wear wear mechanism Gaussian process regression
原文传递
Corrosion and wear properties of in situ(TiB+TiC)/TA15 composites with a high volume percentage of reinforcement
11
作者 Wei-long Wang Kun Shi +5 位作者 Jun Zhao Shi-bing Liu Jiao-jiao Cheng Wei-chen Qiu Tian-yu Liu Zhi-yong Zhang 《China Foundry》 SCIE CAS CSCD 2023年第5期423-431,共9页
The in situ(TiC+TiB)/TA15 composites with different volume percentages of reinforcement(10%,15%,20%and 25%)were prepared by water-cooled copper crucible vacuum suspension melting technology.The structures and composit... The in situ(TiC+TiB)/TA15 composites with different volume percentages of reinforcement(10%,15%,20%and 25%)were prepared by water-cooled copper crucible vacuum suspension melting technology.The structures and compositions of the TA15 alloy and its composites were analyzed by XRD and EDS,and their electrochemical corrosion behaviors in the 3.5%NaCl solution were studied.Corrosion wear testing was conducted using a reciprocating ball-on-disc wear tester under a 10 N load.Results show that the in situ fibrous TiB phase and the granular TiC phase are uniformly distributed on the composite matrix.The microhardness can reach up to 531 HV as 25vol.%TiC+TiB reinforcement is added.Compared with the TA15 alloy,the volume wear rate decreases from(2.21±0.07)×10^(-4)to(1.75±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1)by adding 15vol.%TiC+TiB reinforcement,and the wear mechanism is adhesive wear.When the volume percentage of the reinforcement phase reaches 25%,the volume wear rate increases from(1.75±0.07)×10^(-4)to(2.41±0.07)×10^(-4)mm^(3)·N^(-1)·m^(-1),and the wear mechanism changes into abrasive wear.The volume loss resulted by the interaction between corrosion and wear accounts for more than 27%of the total wear volume.The volume loss due to wear-induced corrosion changes from 1.94%to 4.06%with different additions of reinforcement.The volume loss caused by corrosion-induced wear initially increases from 24.08%to 26.90%as the reinforcement increases from 0 to 15%due to the increase of corrosion potential,and then decreases from 26.90%to 25.68%as the reinforcement increases from 15%to 25%due to the peeling of TiC phase. 展开更多
关键词 titanium matrix composites high volume percentage corrosion wear wear mechanism
下载PDF
Dry sliding wear behavior of an extruded Mg-Dy-Zn alloy with long period stacking ordered phase 被引量:6
12
作者 Guangli Bi Yuandong Li +3 位作者 Xiaofeng Huang Tijun Chen Ying Ma Yuan Hao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第1期63-69,共7页
The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy(at.%)was investigated using a pin-on-disk configuration.The friction coefficient and wear rate were measured within a load range 20-760 N at a sliding veloc... The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy(at.%)was investigated using a pin-on-disk configuration.The friction coefficient and wear rate were measured within a load range 20-760 N at a sliding velocity of 0.785 m/s.Microstructure and wear surface of alloy were examined using scanning electron microscopy.The mechanical properties of alloy were tested at room and elevated temperatures.Five wear mechanisms,namely abrasion,oxidation,delamination,thermal softening and melting dominated the whole wear behavior with increasing applied load.The extruded Mg-2Dy-0.5Zn alloy exhibited the better wear resistance as compared with as-cast Mg_(97)Zn_(1)Y_(2) alloy under the given conditions through contact surface temperature analysis.The improved wear resistance was mainly related to fine grain size,good thermal stability of long period stacking order(LPSO)phase and excellent higher-temperature mechanical properties. 展开更多
关键词 Mg-Dy-Zn alloy Coefficient of friction wear rate wear mechanism
下载PDF
Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt%NaCl solution with sand 被引量:4
13
作者 Hong-mei Zhang Yan Li +3 位作者 Ling Yan Fang-fang Ai Yang-yang Zhu Zheng-yi Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第11期1525-1535,共11页
To simulate the wear and corrosion behavior of high-strength EH47 hull steel in a complicated marine environment in which seawater,sea ice,and sea sand coexist,accelerated wear and corrosion tests were performed in a ... To simulate the wear and corrosion behavior of high-strength EH47 hull steel in a complicated marine environment in which seawater,sea ice,and sea sand coexist,accelerated wear and corrosion tests were performed in a laboratory setting using a tribometer.The effect of large loads on the behavior of abrasion and corrosion in a 3.5wt%NaCl solution with ice and sand to simulate a marine environment were investigated.The experimental results showed that the coefficient of friction(COF)decreases with increasing working load;meanwhile,the loading force and sand on the disk strongly influence the COF.The mechanisms of friction and the coupling effect of abrasion and corrosion in the 3.5wt%NaCl solution with sand were the wear and corrosion mechanisms;furthermore,the wear mechanism exerted the predominant effect. 展开更多
关键词 friction marine environment wear mechanism tribological tests
下载PDF
Investigation on dry sliding wear behavior of Mg/BN nanocomposites 被引量:3
14
作者 R.Vara Prasad Kaviti D.Jeyasimman +2 位作者 Gururaj Parande Manoj Gupt R.Narayanasamy 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第3期263-276,共14页
The present research objective is to investigate the effect of boron nitride nanoparticles reinforcement on dry sliding wear behavior of pure Magnesium and magnesium nanocomposites.The fabricated nanocomposites contai... The present research objective is to investigate the effect of boron nitride nanoparticles reinforcement on dry sliding wear behavior of pure Magnesium and magnesium nanocomposites.The fabricated nanocomposites contains varied percentages of boron nitride such as 0%(pure Mg),0.5%,1.5%and 2.5%were synthesized by using powder metallurgy technique and followed by a hot working process called hot extrusion.The pin on disk equipment was used for conducting the wear tests for traditional loads of 5 N,7 N and 10 N at different sliding speeds of 0.6,0.9 and 1.2 m/s against the steel disk at room temperature.For all traditional loads and sliding speeds,the changes in wear rate and friction co-efficient(μ)with respect to sliding distances were observed and analyzed.The wear characteristics are observed with the help of scanning electron microscopy under given test conditions.To investigate dominant wear mechanisms for various test conditions,the morphologies of all worn composites surfaces were analyzed.Final results show that,for all nanocomposites the wear level raises with respect to the sliding speeds and loads.Magnesium reinforced with 0.5%boron nitride shows lower wear rates and low friction coefficient values compare with magnesium reinforced with 1.5%boron nitride and 2.5%boron nitride nanocomposites. 展开更多
关键词 Metal matrix composites wear Friction coefficient wear mechanisms
下载PDF
Microstructure and dry sliding wear behavior of as-cast TiCp/Ti-1100-0.5Nb titanium matrix composite at elevated temperatures 被引量:2
15
作者 Chao-zhi Li Bin-guo Fu +4 位作者 Tian-shun Dong Jin-hai Liu Ying-jun Song Xue-bo Zhao Guo-lu Li 《China Foundry》 SCIE CAS 2020年第6期455-463,共9页
The microstructure and dry sliding wear performance of as-cast TiCp/Ti-1100-0.5Nb composite at 25℃,500℃ and 600℃ were systematically investigated.Results show that the solidification matrix microstructure is the ty... The microstructure and dry sliding wear performance of as-cast TiCp/Ti-1100-0.5Nb composite at 25℃,500℃ and 600℃ were systematically investigated.Results show that the solidification matrix microstructure is the typical Widmanst?tten structure.The eutectic TiC particles are uniformly distributed in the matrix in the form of feathery,long rod and strip-like shapes.Meanwhile,the interface between TiC and titanium matrix is clear and without any reaction.The wear rate of TiCp/Ti-1100-0.5Nb at 600℃ and 500℃ is reduced by 95.8%and 79.9%,respectively,compared with that of the value of 51.8×10^-6 mm^3·mm^-1 at 25℃.The friction coefficient of the steady-state period at 25℃,500℃,600℃ is 0.48,0.8,1.2,respectively,and the variation extent of the friction coefficient at elevated temperatures is greater than at 25℃.The wear mechanism is changed from the mixture of adhesive wear and abrasive wear to mild oxidation wear with rising temperature.It can also be concluded that the composite possesses excellent high temperature wear resistance.The high-wear resistance of the composite is attributed to the Fe2O3 and TiO2.The presence of Fe2O3 and TiO2 reduces the wear rate,increases the friction coefficient,and also improves the range-ability of the friction coefficient. 展开更多
关键词 titanium matrix composite AS-CAST MICROSTRUCTURE wear behavior wear mechanism
下载PDF
Correlation between test temperature, applied load and wear transition of Mg97Zn1Y2 alloy 被引量:1
16
作者 J.An Y.X.Tian C.Q.Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期592-603,共12页
Dry sliding wear tests were performed on Mg97 Zn1 Y2 alloy at various temperatures of 20,50,100,150 and 200°C using a pin-on-disc wear testing machine in order to reveal mild-severe(M-S)wear transition mechanism ... Dry sliding wear tests were performed on Mg97 Zn1 Y2 alloy at various temperatures of 20,50,100,150 and 200°C using a pin-on-disc wear testing machine in order to reveal mild-severe(M-S)wear transition mechanism during elevated-temperature wear testing.It was shown that at each test temperature,the wear rate increased with increasing load,and all wear rate-load curves demonstrated two distinct stages i.e.mild and severe wear stages.The predominant wear mechanisms operating in mild and severe wear stages were analyzed,and they were indicated in the mild and severe wear regimes of a wear mechanism transition map,respectively.M-S wear transition mechanism was analyzed by comparison of microstructure transformation and hardness change in subsurfaces of samples tested in mild and severe wear stages,from which M-S wear transition mechanism was confirmed as softening of surface material arising from dynamic recrystallization(DRX)microstructure transformation.The M-S wear transition load was found to have a linear relationship with test temperature,and decreased with rising test temperature.M-S wear transition obeyed a critical surface DRX temperature(SDT)criterion under given conditions,and the transition loads were estimated at various test temperatures by using the criterion. 展开更多
关键词 Mg-alloys Elevated temperatures wear rate wear mechanism wear transition
下载PDF
Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting 被引量:1
17
作者 K.Sanesh S.Shiam Sunder N.Radhika 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1052-1060,共9页
The main objective of this paper was to fabricate Cu_(10)Sn_5Ni alloy and its composites reinforced with various contents of Si_3N_4 particles(5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior... The main objective of this paper was to fabricate Cu_(10)Sn_5Ni alloy and its composites reinforced with various contents of Si_3N_4 particles(5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer. Microstructural examinations of the specimens revealed a uniform dispersion of Si_3N_4 particles in the copper matrix. Wear experiments were performed for all combinations of parameters, such as load(10, 20, and 30 N), sliding distance(500, 1000, and 1500 m), and sliding velocity(1, 2, and 3 m/s), for the alloy and the composites. The results revealed that wear rate increased with increasing load and increasing sliding distance, whereas the wear rate decreased and then increased with increasing sliding velocity. The primary wear mechanism encountered at low loads was mild adhesive wear, whereas that at high loads was severe delamination wear. An oxide layer was formed at low velocities, whereas a combination of shear and plastic deformation occurred at high velocities. The mechanism at short sliding distances was ploughing action of Si_3N_4 particles, which act as protrusions; by contrast, at long sliding distances, direct metal–metal contact occurred. Among the investigated samples, the Cu/10wt% Si_3N_4 composite exhibited the best wear resistance at a load of 10 N, a velocity of 2 m/s, and a sliding distance of 500 m. 展开更多
关键词 copper matrix composites stir casting adhesive wear wear mechanisms
下载PDF
Dry friction and wear properties of intermetallics MoSi_2
18
作者 张厚安 刘心宇 +1 位作者 陈平 唐果宁 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期916-919,共4页
The dry friction and wear properties of intermetallics MoSi 2 against 45 steel under different loads were investigated with M 2 type friction and wear tester. Scanning electric microscope (SEM) equipment with micropro... The dry friction and wear properties of intermetallics MoSi 2 against 45 steel under different loads were investigated with M 2 type friction and wear tester. Scanning electric microscope (SEM) equipment with microprobe was employed to analyze the morphology of the friction surface. Results show that the dry friction and wear properties are deeply affected by load. The wear rate of MoSi 2 at the load of 80?N is the maximum which is 36.1?μg/m. On the condition of the load of 150?N, MoSi 2 material has the better friction and wear properties: friction coefficient is 0.28 and wear rate is 10.6?μg/m. With the load increasing, the main friction mechanisms change from microslip and plastic deformation to adhesive effect, and the main wear mechanisms change from plough groove wear and oxidation fatigue wear to adhesive wear. 展开更多
关键词 molybdenum disilicide friction and wear mechanism dry friction
下载PDF
Analysis on the Wear Performances of Cemented Carbide Tools Containing Ti in the Coatings When Machining Ti⁃6Al⁃4V Alloys
19
作者 Jianfei Sun Daxi Du +3 位作者 Zixuan Ding Kai Wang Dashan Bai Wuyi Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期14-22,共9页
Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely us... Because of the high affinity of the same element Ti,cemented carbide tools containing Ti seem to be non⁃optimal in machining titanium alloys.However,in practice,cemented carbide tools containing Ti are still widely used in machining titanium alloys.Cutting experiments were conducted in order to systematically explain the contradictions between the practice and theory.The diffusion process between titanium alloys and the cemented carbide tools was analyzed by auger electron spectroscopy detecting the cutting regions.It was also analyzed by Ti/Co diffusion behavior simulated by molecular thermodynamics.The experimental results and the simulation results showed that the mutual diffusion of Ti/Co atoms was the major reason for the diffusion wear.The dissolution⁃diffusion wear was one of the main wear mechanisms for the cemented carbide tools containing Ti in the coatings.Moreover,four types of cemented carbide tools and two other types of cermet tools were used to machine the Ti⁃6Al⁃4V alloys at different cutting speeds to further verify the high affinity of cutting tools containing Ti in the substrate/coating.The verification experiments results showed that the cemented carbide tools containing Ti generally cannot be used for machining titanium alloys,but could show less affinity in the cutting regions with reasonable cutting conditions. 展开更多
关键词 wear mechanisms Ti/Co diffusion molecular thermodynamics simulation cemented carbide tool containing Ti Ti⁃6Al⁃4V alloys
下载PDF
A Hf-doped dual-phase high-entropy alloy: phase evolution and wear features
20
作者 Hao Ren Rui-Run Chen +5 位作者 Xue-Feng Gao Tong Liu Gang Qin Yu-Lung Chiu Shi-Ping Wu Jing-Jie Guo 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期324-333,共10页
Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute ... Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear. 展开更多
关键词 High entropy alloy Laves phase HARDNESS wear mechanism
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部