Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and ...The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.展开更多
With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ...With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.展开更多
Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear...Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.展开更多
Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it ha...Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.展开更多
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate...Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.展开更多
The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacr...The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.展开更多
It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of pre...It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.展开更多
This study reviews the development of Baosteel' s pipeline steel over the last 20 years. Energy demand accelerates the development of high-grade pipeline steel as well as modem petroleum and natural gas pipeline cons...This study reviews the development of Baosteel' s pipeline steel over the last 20 years. Energy demand accelerates the development of high-grade pipeline steel as well as modem petroleum and natural gas pipeline construction. Pipeline steel is a kind of typical modem microalloyed steel produced via thermo-mechanical controlled processing. The development process of pipeline steel at Baosteel represents the course of the technological progress of pipeline steel in China. In the last two decades, Baosteel' s pipeline steel has been developed from a single product of hot- rolled strips to a variety of products including hot-rolled strips, heavy plates, high-frequency electric resistance welded (HFW) pipes and U-ing-O-ing-Expanding (UOE) welded pipes. Moreover, the proportion of the HFW and the UOE welded pipes has been increasing year by year. UOE longitudinal submerged arc welding (SAW) pipes have become the leading product of strategic significance in Baosteel' s pipeline steel family. Over the last 20 years, Baosteel' s pipeline steel products have shifted from "ferrite + pearlite" X52 to "acicular ferrite" XT0 and X80, and Baosteel has developed hydrogen-induced cracking (HIC) resistant pipeline steel. Baosteel' s pipeline steel products have been applied in variety of geographical areas,including deserts, Gobi, mountains,plains as well as the ocean. And both the X100 and the X120 ultra high strength pipeline steels have been produced on a trial basis. Baosteel has accumulatively produced 6.5 Mt of pipeline steel for both domestic and overseas projects. Baosteel will continue strengthening its strategic cooperation with oil companies, and conducting research on ultra high strength pipeline steel, pipeline steel for strain-based design and submarine pipeline steel,etc. , so as to meet the need of construction in the future.展开更多
The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of t...The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of this pipe are described briefly in this paper, and the finite element analysis has been done for the sake of understanding the distributions of stress and displacement inside this pipe under hydrostatic pressure. The analysis results are very important for safety application of the steel reinforced plastic pipe.展开更多
We investigated the effects of pipe diameter on the corrosion resistance of stainless steel type 304 pipes using electrochemical measurements. Compared to plate steel, pipes have harder physical properties and tend to...We investigated the effects of pipe diameter on the corrosion resistance of stainless steel type 304 pipes using electrochemical measurements. Compared to plate steel, pipes have harder physical properties and tend to be harder and showed greater permeability with decreasing inner diameter. We found that the maximum corrosion current density in the secondary active state, which is the starting point of secondary passivation, appeared in the polarization curve measurement in tap water. Similar to the Vickers hardness and the maximum current density in the secondary active state, the permeability tended to increase as the diameter decreased. This is thought to increase the amount of deformation-induced martensitic and increase corrosion susceptibility. The peak of the secondary active current density was clearly seen as the potential sweep speed was increased. In addition, potential sweep speed dependence was observed in the corrosion susceptibility evaluation of deformation-induced martensite. In comparison with acid treatment, the formation of deformation-induced martensite was considered to occur in the extreme surface layer. The maximum corrosion current density in the secondary active state is expected to be a new susceptibility evaluation method for evaluating the deformation-induced martensitic transformation.展开更多
Difference processing was used to the direct current magnetic flux leakage (DC-MFL) signal, emanating from the defects machined artificially on the internal and external surfaces of a steel pipe. Consequently, the l...Difference processing was used to the direct current magnetic flux leakage (DC-MFL) signal, emanating from the defects machined artificially on the internal and external surfaces of a steel pipe. Consequently, the loea-tion discriminating index 8 was provided to identify the defect whether it is on the internal surface or the external one. Three characteristics, shape, depth and orientation of the defect, were discussed through a series of experiments on the artificial defects, such as transverse notches, oblique notches and pits on the steel pipe. The approach has been verified effective to address the defect location identifying problem, albeit the limits on the accuracy assessment to those natural defects on steel pipes in service.展开更多
An excited experiment system of 20# steel pipe was established with oil cylinder, 20# steel pipe, frequency converter, pump station and wave exciter generating unsteady flow artificially. The experimental results show...An excited experiment system of 20# steel pipe was established with oil cylinder, 20# steel pipe, frequency converter, pump station and wave exciter generating unsteady flow artificially. The experimental results showed that the 20# steel pipe could vibrate with the excitation of unsteady flows, and the vibration was periodic, instead of a harmonic one. Particles on the front and rear positions of pipe vibrated synchronously, and the vibration intensity of the pipe's two ends was greater than in the middle. System pressure and wave exciter's frequency had much influence upon pipe's amplitude. Pipe's vibration frequency was little affected by system pressure, and its value was close to the wave exciter's. Therefore, the active control of pipe's vibration can be realized by setting system pressure and adjusting frequency converter's frequency.展开更多
On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear fi...On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.展开更多
Based on Hencky's total strain theory of plasticity,ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material,the simplified analytical solution is p...Based on Hencky's total strain theory of plasticity,ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material,the simplified analytical solution is proposed as well.Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes.Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes.It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material.Thus,the ignorance of strain hardening effect,as commonly assumed in current codes,may underestimate the ultimate bending capacity of steel pipes.The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes,supports of offshore platforms and other tubular structural steel members.展开更多
The manufacture of extra-thin wall steel pipe by LD cluster mill through suitable tool design and process design was described in detail.The defects in steel pipe produced during rolling were analysed and some measure...The manufacture of extra-thin wall steel pipe by LD cluster mill through suitable tool design and process design was described in detail.The defects in steel pipe produced during rolling were analysed and some measures were taken to improve them.Five kinds of extra-thin wall steel pipes have been produced successfully,which are as follows:φ18.5mm×0.25 mm,φ15.5mm×0.25 mm,φ11.4mm×0.2mm,φ14- 24mm×0.12 mm,φ21.74mm×0.12 mm.展开更多
This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress i...This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress in heat affected zone(HAZ)is higher than that in weld for spiral weld pipe.For the circumferential weld pipe and spiral weld pipe,the residual stress in inner surface is higher than that in outer surface.However,for the spiral weld pipe,the residual stress in inner surface is smaller than that in outer surface.The hoop residual stress of circumferential weld pipe is higher than that of longitudinal weld pipe,while the axial residual stress of circumferential weld pipe is smaller than that of longitudinal weld pipe.The hoop stresses for circumferential weld pipe and axial stress for longitudinal weld pipe have exceeded the yield strength of base metal.With the increase of helix angle,the hoop stress decreases while the axial stress increases.For the spiral pipe(α=30° to 50°),both the hoop stress and axial stress are relatively small.The spiral pipe(helix angle ranging from 30° to 50°) is helpful to reduce stress corrosion cracking(SCC) and it is recommended to manufacture the steel pipe.展开更多
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘The industrial application of an exterior three-layer anticorrosive polypropylene coating system(3PP)on large-diameter(larger than Φ600 mm)steel pipes was developed using an experimental process simulation study and the optimization of raw materials inspection,steel pipe surface pretreatments,and water cooling control on a coating application process.The coating properties meet ISO standard 21809 on buried or submerged 3PP pipelines used in the petroleum and natural gas industries.Differential scanning calorimetry and X-ray diffraction were used to analyze the crystallinities and grain sizes of polypropylene(PP)top coats with different cooling rates.Increasing the melt cooling rate reduces the crystallinity and grain size of the PP top coat and enhances its strength and toughness.
文摘With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.
文摘Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.
文摘Baosteel’s first BTW1 austenitic high-manganese wear-resistant steel exhibits strong deformation-induced hardening characteristics.Compared with common low-alloy martensitic wear-resistant steels in the market, it has improved impact wear resistance, hard abrasive wear, erosion wear performance, and impact toughness.The metallurgical properties of such austenitic wear-resistant steel lead to the risk of failure because of hot cracking defects in the welded structure.In wear-resistant applications, evaluating hot cracking susceptibility is necessary to avoid the effect of welding defects.In this study, the Varestraint test is used to quantitatively analyze and evaluate the hot cracking susceptibility of BTW1 austenitic high-manganese wear-resistant steel.The test results show that by controlling the content of impurity elements and grain refinement, BTW1 austenitic high-manganese wear-resistant steel effectively reduces hot cracking tendency and has a low incidence of hot cracking under small strain conditions.The developed matching welding process can effectively avoid the influence of hot cracking susceptibility.
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
基金financial support from the National Natural Science Foundation of China (Nos. 51004084, 51274170)the Doctoral Fund of Ministry of Education of China (No. 20105121120002)
文摘Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use.
文摘The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.
基金Project(51305334)supported by the National Natural Science Foundation of ChinaProject(51335009)supported by the National Natural Science Foundation of China for Key Program+1 种基金Project(CXY1442(4))supported by the Science and Technology Planning Project of Xi’an,ChinaProject supported by Shaanxi Province Postdoctoral Science Research Program of China
文摘It is necessary to use the integrated stainless steel pipe having two fitting bodies without welds while train travelling at high speed. In order to form this type of integrated stainless steel pipe, the method of preforming combined finish forming process is developed. The preforming process is characterized by flaring combined upsetting for left fitting body which is like a flange, and is characterized by tube axial compressive process under die constraint for right fitting body which is like a double-wall pipe. The finite element simulations of the processes are carried out by software package DEFORM, and the results indicate that: 1) left or right fitting body can be formed by a two-step forming process without folding and under-filling defects; 2) by using two-step forming, strain and stress in left fitting body are larger than those in right fitting body, and deformation in right fitting body is more homogenous than the deformation in left fitting body; 3) two or more preforming steps may be needed for left fitting body considering the distributions of strain and stress.
文摘This study reviews the development of Baosteel' s pipeline steel over the last 20 years. Energy demand accelerates the development of high-grade pipeline steel as well as modem petroleum and natural gas pipeline construction. Pipeline steel is a kind of typical modem microalloyed steel produced via thermo-mechanical controlled processing. The development process of pipeline steel at Baosteel represents the course of the technological progress of pipeline steel in China. In the last two decades, Baosteel' s pipeline steel has been developed from a single product of hot- rolled strips to a variety of products including hot-rolled strips, heavy plates, high-frequency electric resistance welded (HFW) pipes and U-ing-O-ing-Expanding (UOE) welded pipes. Moreover, the proportion of the HFW and the UOE welded pipes has been increasing year by year. UOE longitudinal submerged arc welding (SAW) pipes have become the leading product of strategic significance in Baosteel' s pipeline steel family. Over the last 20 years, Baosteel' s pipeline steel products have shifted from "ferrite + pearlite" X52 to "acicular ferrite" XT0 and X80, and Baosteel has developed hydrogen-induced cracking (HIC) resistant pipeline steel. Baosteel' s pipeline steel products have been applied in variety of geographical areas,including deserts, Gobi, mountains,plains as well as the ocean. And both the X100 and the X120 ultra high strength pipeline steels have been produced on a trial basis. Baosteel has accumulatively produced 6.5 Mt of pipeline steel for both domestic and overseas projects. Baosteel will continue strengthening its strategic cooperation with oil companies, and conducting research on ultra high strength pipeline steel, pipeline steel for strain-based design and submarine pipeline steel,etc. , so as to meet the need of construction in the future.
文摘The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of this pipe are described briefly in this paper, and the finite element analysis has been done for the sake of understanding the distributions of stress and displacement inside this pipe under hydrostatic pressure. The analysis results are very important for safety application of the steel reinforced plastic pipe.
文摘We investigated the effects of pipe diameter on the corrosion resistance of stainless steel type 304 pipes using electrochemical measurements. Compared to plate steel, pipes have harder physical properties and tend to be harder and showed greater permeability with decreasing inner diameter. We found that the maximum corrosion current density in the secondary active state, which is the starting point of secondary passivation, appeared in the polarization curve measurement in tap water. Similar to the Vickers hardness and the maximum current density in the secondary active state, the permeability tended to increase as the diameter decreased. This is thought to increase the amount of deformation-induced martensitic and increase corrosion susceptibility. The peak of the secondary active current density was clearly seen as the potential sweep speed was increased. In addition, potential sweep speed dependence was observed in the corrosion susceptibility evaluation of deformation-induced martensite. In comparison with acid treatment, the formation of deformation-induced martensite was considered to occur in the extreme surface layer. The maximum corrosion current density in the secondary active state is expected to be a new susceptibility evaluation method for evaluating the deformation-induced martensitic transformation.
基金supported by the National Natural Science Foundation of China under Grant No.50675083
文摘Difference processing was used to the direct current magnetic flux leakage (DC-MFL) signal, emanating from the defects machined artificially on the internal and external surfaces of a steel pipe. Consequently, the loea-tion discriminating index 8 was provided to identify the defect whether it is on the internal surface or the external one. Three characteristics, shape, depth and orientation of the defect, were discussed through a series of experiments on the artificial defects, such as transverse notches, oblique notches and pits on the steel pipe. The approach has been verified effective to address the defect location identifying problem, albeit the limits on the accuracy assessment to those natural defects on steel pipes in service.
基金Funded by the National Natural Science Foundation of China(No. 50775154)the Natural Science Foundation for Young Scientists of Shanxi Province(No. 2010201025)
文摘An excited experiment system of 20# steel pipe was established with oil cylinder, 20# steel pipe, frequency converter, pump station and wave exciter generating unsteady flow artificially. The experimental results showed that the 20# steel pipe could vibrate with the excitation of unsteady flows, and the vibration was periodic, instead of a harmonic one. Particles on the front and rear positions of pipe vibrated synchronously, and the vibration intensity of the pipe's two ends was greater than in the middle. System pressure and wave exciter's frequency had much influence upon pipe's amplitude. Pipe's vibration frequency was little affected by system pressure, and its value was close to the wave exciter's. Therefore, the active control of pipe's vibration can be realized by setting system pressure and adjusting frequency converter's frequency.
文摘On the basis of the thermal-elastic-plastic theory, a three-dimensional finite element numerical simulation is performed on the girth welded residual stresses of the duplex stainless steel pipe with ANSYS nonlinear finite element program for the first time. Three-dimensional FEM using mobile heat source for analysis transient temperature field and welding stress field in circumferential joint of pipes is founded. Distributions of axial and hoop residual stresses of the joint are investigated. The axial and the hoop residual stresses at the weld and weld vicinity on inner surface of pipes are tensile, and they are gradually transferred into compressive with the increase of the departure from the weld. The axial residual stresses at the weld and weld vicinity on outer surface of pipes is compressive while the hoop one is tensile. The distributions of residual stresses compared positive-circle with negative-circle show distinct symmetry. These results provide theoretical knowledge for the optimization of process and the control of welding residual stresses.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309236)the Opening Fund of State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(Grant No.1314)+2 种基金the Opening Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)(Grant No HESS-1411)the Opening Fund of State Key Laboratory of Coastal and Offshore Engineering(Dalian University of Technology)(Grant No.LP1507)the Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462015YQ0403 and 2462015YQ0408)
文摘Based on Hencky's total strain theory of plasticity,ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material,the simplified analytical solution is proposed as well.Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes.Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes.It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material.Thus,the ignorance of strain hardening effect,as commonly assumed in current codes,may underestimate the ultimate bending capacity of steel pipes.The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes,supports of offshore platforms and other tubular structural steel members.
文摘The manufacture of extra-thin wall steel pipe by LD cluster mill through suitable tool design and process design was described in detail.The defects in steel pipe produced during rolling were analysed and some measures were taken to improve them.Five kinds of extra-thin wall steel pipes have been produced successfully,which are as follows:φ18.5mm×0.25 mm,φ15.5mm×0.25 mm,φ11.4mm×0.2mm,φ14- 24mm×0.12 mm,φ21.74mm×0.12 mm.
基金supported by the Taishan Scholar Construction Funding(ts201511018)the National Natural Science Foundation of China(11372359)+2 种基金the Natural Science Foundation for Distinguished Young Scholars of Shandong Province(JQ201417)the Fundamental Research Funds for the Central Universities(15Cx08006A)the Innovation Project Foundation for Graduate Student of China University of Petroleum(YCXJ2016029)
文摘This study developed a sequential coupling finite element procedure to predict residual stresses of steel pipes with longitudinal wela/ circumferential weld and spiral weld.The results show that the residual stress in heat affected zone(HAZ)is higher than that in weld for spiral weld pipe.For the circumferential weld pipe and spiral weld pipe,the residual stress in inner surface is higher than that in outer surface.However,for the spiral weld pipe,the residual stress in inner surface is smaller than that in outer surface.The hoop residual stress of circumferential weld pipe is higher than that of longitudinal weld pipe,while the axial residual stress of circumferential weld pipe is smaller than that of longitudinal weld pipe.The hoop stresses for circumferential weld pipe and axial stress for longitudinal weld pipe have exceeded the yield strength of base metal.With the increase of helix angle,the hoop stress decreases while the axial stress increases.For the spiral pipe(α=30° to 50°),both the hoop stress and axial stress are relatively small.The spiral pipe(helix angle ranging from 30° to 50°) is helpful to reduce stress corrosion cracking(SCC) and it is recommended to manufacture the steel pipe.