Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per...Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.展开更多
With the advancement of deep learning and neural networks,the computational demands for applications in wearable devices have grown exponentially.However,wearable devices also have strict requirements for long battery...With the advancement of deep learning and neural networks,the computational demands for applications in wearable devices have grown exponentially.However,wearable devices also have strict requirements for long battery life,low power consumption,and compact size.In this work,we propose a scalable optoelectronic computing system based on an integrated optical convolution acceleration core.This system enables high-precision computation at the speed of light,achieving 7-bit accuracy while maintaining extremely low power consumption.It also demonstrates peak throughput of 3.2 TOPS(tera operations per second)in parallel processing.We have successfully demonstrated image convolution and the typical application of an interactive first-person perspective gesture recognition application based on depth information.The system achieves a comparable recognition accuracy to traditional electronic computation in all blind tests.展开更多
Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(...Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(Denmark,Finland,Iceland,Norway,and Sweden)and published in 2000 or later.Methods:A systematic search was carried out in PubMed and Web of Science in June 2023 using predefined search terms.Results:Fourteen unique research projects or surveillance studies were identified.Additionally,2 surveillance studies published by national agencies were included,resulting in a total of 16 studies for inclusion.National surveillance systems exist in Finland and Norway,with regular survey waves in school-aged children/adolescents and adults.In Denmark,recent nationally representative data have been collected in school children only.So far,Sweden has no regular national surveillance system using device-based data collection.No studies were found from Iceland.The first study was conducted in 2001 and the most recent in 2022,with most data collected from 2016 to date.Five studies included children/adole scents 6-18 years,no study included preschoolers.In total 11 studies included adults,of which 8 also covered older adults.No study focused specifically on older adults.The analytical sample size ranged from 205 to 27,890.Detailed methodology is presented,such as information on sampling strategy,device type and placement,wear protocols,and physical activity classification schemes.Levels of physical activity and sedentary time in children/adolescents,adults,and older adults across the Nordic countries are presented.Conclusion:A growing implementation of device-based population surveillance of physical activity and sedentary behavior in the Nordic countries has been identified.The variety of devices,placement,and data procedures both within and between the Nordic countries highlights the challenges when it comes to comparing study outcomes as well as the need for more standardized data collection.展开更多
This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
BACKGROUND Postoperative pulmonary complications(PPCs)are common in patients who undergo colorectal surgery.Studies have focused on how to accurately diagnose and reduce the incidence of PPCs.Lung ultrasound has been ...BACKGROUND Postoperative pulmonary complications(PPCs)are common in patients who undergo colorectal surgery.Studies have focused on how to accurately diagnose and reduce the incidence of PPCs.Lung ultrasound has been proven to be useful in preoperative monitoring and postoperative care after cardiopulmonary surgery.However,lung ultrasound has not been studied in abdominal surgeries and has not been used with wearable devices to evaluate the influence of postoperative ambulation on the incidence of PPCs.AIM To investigate the relationship between lung ultrasound scores,PPCs,and postoperative physical activity levels in patients who underwent colorectal surgery.METHODS In this prospective observational study conducted from November 1,2019 to August 1,2020,patients who underwent colorectal surgery underwent daily bedside ultrasonography from the day before surgery to postoperative day(POD)5.Lung ultrasound scores and PPCs were recorded and analyzed to investigate their relationship.Pedometer bracelets measured the daily movement distance for 5 days post-surgery,and the correlation between postoperative activity levels and lung ultrasound scores was examined.RESULTS Thirteen cases of PPCs was observed in the cohort of 101 patients.The mean(standard deviation)peak lung ultrasound score was 5.32(2.52).Patients with a lung ultrasound score of≥6 constituted the high-risk group.High-risk lung ultrasound scores were associated with an increased incidence of PPCs after colorectal surgery(logistic regression coefficient,1.715;odds ratio,5.556).Postoperative movement distance was negatively associated with the lung ultrasound scores[Spearman’s rank correlation coefficient(r),-0.356,P<0.05].CONCLUSION Lung ultrasound effectively evaluates pulmonary condition post-colorectal surgery.Early ambulation and respiratory exercises in the initial two PODs will reduce PPCs and optimize postoperative care in patients undergoing colorectal surgery.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted...With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.展开更多
Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cat...Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations.展开更多
Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resul...Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.展开更多
This paper presents a design of new type of multi-parameter wearable medical devices signal processing platform. The signal processing algorithm has a QRS-wave detection algorithm based on LADT, wavelet transformation...This paper presents a design of new type of multi-parameter wearable medical devices signal processing platform. The signal processing algorithm has a QRS-wave detection algorithm based on LADT, wavelet transformation and threshold detection with TMS320VC5509 DSP system. The DSP can greatly increase the speed of QRS-wave detection, and the results can be practical used for multi-parameter wearable device detection of abnormal ECG.展开更多
Objective:To study the value of the wearable single-lead remote monitoring device with the scatterplot in chronic disease management.Methods:dmitted into 435 residents accord with the inclusion criteria of 20 primary ...Objective:To study the value of the wearable single-lead remote monitoring device with the scatterplot in chronic disease management.Methods:dmitted into 435 residents accord with the inclusion criteria of 20 primary medical institutions of Yinchuan city,and grouped voluntarily by the implementation schemes were grouped voluntarily according to the implementation schemes.According to one of the three implementation schemes selected,the general practitioner guided the subjects to take on the wearable single-lead remote monitoring device,collecting and uploading the EEG data,then diagnosed and analyzed by the synchronously generated ECG scatterplot,finally,summarized the incidence and the categories,analyzed the differences among these three groups.Results:Among 435 subjects,there were 61 normal patients and 374 arrhythmias with the detection rate of 85.98%;and among the 1672 data collected,there were 606 normal data and 1066 arrhythmia with the detection rate of 63.76%;880 data in total 333 cases with atrial premature beat;442 data in total 215 cases with occasional ventricular premature beat;37 data of 22 cases with frequent atrial beat;65 data of 28 cases with frequent ventricular premature beat;13 data of 6 cases with atrial fibrillation;25 data of 15 cases with excitation conduction disorder;2 data of 2 cases with atrial flutter;31 data of 19 cases with ventricular tachycardia;30 data of 16 cases with conduction block;and 14 data of 8 cases with Para systolic rhythm.comparing the detection rate of arrhythmia in three groups,the difference was not statistically significant(P>0.05).Conclusion:The wearable singlelead remote monitoring device with the scatterplot has high application value in cardiovascular chronic disease management.Its effectively screening,validly diagnosing and detailed classifying are helpful to the early intervention,and the protection of the patients’lives.展开更多
Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national devel...Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national development and prosperity but also the common wish of the Chinese people. Actually,smart wearable technology is an emerging one and the application of some smart wearable devices such as health watch is the most promising one in the health industry. As new psychotherapy,cognitive behavioral therapy( CBT) can change the poor awareness by means of changing one's way of thinking,thus eliminating the unhealthy emotions and behaviors. In terms of health management,CBT enjoys such advantages as guidance,motivation,integrity and short therapy time. This paper introduces the improvement of smart wearable device guided by professional health management solutions on individual health by taking Philips health watch as an example,and the users can therefrom get full understanding of the relationship between smart wearable devices and health,thus improving their individual health.展开更多
Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood g...Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood glucose sensor. These devices have great potential to overcome the major disadvantages of several current blood glucose monitoring methods. Over last two decades, extensive research has been made in all of these related fields. More recently, several wearable devices for semi-invasive blood sampling have been developed. This review aims at summarizing the current state-of-the-art development and utilization of such wearable devices for continuous monitoring of blood glucose levels, with a special attention on design considerations, fabrication technologies and testing methods.展开更多
From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing deci...From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing decisions,combined with the empirical research of some researchers.This paper designs questionnaires and scales.The sampling survey method is used to investigate and analyze the influencing factors of Guangxi consumers’decision to purchase Xiaomi smart wearable devices.Questionnaires were distributed through Questionnaire Star,and 385 valid questionnaires were collected for descriptive statistics and correlation analysis.Conclusions are as follow:(1)Consumers in Guangxi who purchase Xiaomi smart wearable devices are between 19 and 32 years old,and most of them have a bachelor’s degree.Among the five factors of demographic characteristics,only income and marketing mix satisfaction have a positive correlation,indicating that customers are sensitive to Xiaomi smart wearable products.And among the customers of Xiaomi smart wearable products,the monthly income of less than 5,000 yuan accounted for 30.91%of the total number of surveys;the monthly income was 5,000-7,000 yuan,accounting for 34.29%.(2)The satisfaction of the marketing mix is positively correlated with the satisfaction of customer decision-making.The satisfaction of the marketing mix varies with the age,gender,education,income,and working years of each population,and only the income is positively correlated with the satisfaction of the marketing mix.Relationships,age,gender,education,and years of employment were not associated with marketing mix satisfaction.According to the above conclusions,relevant and reasonable product development and marketing suggestions are put forward for the enterprise,which provides a reference for the enterprise’s brand building and market development.Therefore,on the basis of comparing with other scholars at home and abroad,through the 7P marketing theory and purchasing decision theory and the research on the current situation of influencing factors for customers to purchase Xiaomi smart wearable devices in Guangxi,this paper compiled a questionnaire for 385 private colleges and universities in Guangxi.A questionnaire survey was carried out with customers,and the current situation of customers’purchasing decision-making behavior was obtained and analyzed and the following suggestions were put forward:continuously innovating products,targeting target customers,reasonably setting product prices,improving marketing mix.展开更多
We are developing a novel wearable devices called the urban intelligent fashion advertising.Such system is mobile information devices capable of supporting remote communication and intelligent interaction between term...We are developing a novel wearable devices called the urban intelligent fashion advertising.Such system is mobile information devices capable of supporting remote communication and intelligent interaction between terminals.In this paper,we explore the possible functions of such a wearable devices and will present the service-based architecture combing the hardware and the software.This architecture involves two major parts.The first part is hardware design,which includes microcontroller,display part,communication module,and positioning system module.The second part is software design,which is a real-time interactive system that includes signal reception,position detection,and user workload assessment.Then,we use the interactive concept and interactive technology to construct the urban fashion advertising service model,and elaborate on its business model.Finally,we present sustainability development recommendations for the proposed service model.展开更多
According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by...According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by wristband,children watch and smart shoes increased by92.1%year-on-year and the smart wearable devices represented by smart watch increased by 3.4%year-on-year.'Unlike the overseas展开更多
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金This work was supported by the NSFC(22075019,22035005)the Young Talent Program of Henan Agricultural University(30500601).
文摘Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.
基金supported by the National Natural Science Foundation of China (U21A20511)the Innovation Project of Optics Valley Laboratory (OVL2021BG001).
文摘With the advancement of deep learning and neural networks,the computational demands for applications in wearable devices have grown exponentially.However,wearable devices also have strict requirements for long battery life,low power consumption,and compact size.In this work,we propose a scalable optoelectronic computing system based on an integrated optical convolution acceleration core.This system enables high-precision computation at the speed of light,achieving 7-bit accuracy while maintaining extremely low power consumption.It also demonstrates peak throughput of 3.2 TOPS(tera operations per second)in parallel processing.We have successfully demonstrated image convolution and the typical application of an interactive first-person perspective gesture recognition application based on depth information.The system achieves a comparable recognition accuracy to traditional electronic computation in all blind tests.
文摘Purpose:The purpose of this scoping review was to summarize and describe the methodology and results from population-based studies of physical activity and sedentary time measured with devices in the Nordic countries(Denmark,Finland,Iceland,Norway,and Sweden)and published in 2000 or later.Methods:A systematic search was carried out in PubMed and Web of Science in June 2023 using predefined search terms.Results:Fourteen unique research projects or surveillance studies were identified.Additionally,2 surveillance studies published by national agencies were included,resulting in a total of 16 studies for inclusion.National surveillance systems exist in Finland and Norway,with regular survey waves in school-aged children/adolescents and adults.In Denmark,recent nationally representative data have been collected in school children only.So far,Sweden has no regular national surveillance system using device-based data collection.No studies were found from Iceland.The first study was conducted in 2001 and the most recent in 2022,with most data collected from 2016 to date.Five studies included children/adole scents 6-18 years,no study included preschoolers.In total 11 studies included adults,of which 8 also covered older adults.No study focused specifically on older adults.The analytical sample size ranged from 205 to 27,890.Detailed methodology is presented,such as information on sampling strategy,device type and placement,wear protocols,and physical activity classification schemes.Levels of physical activity and sedentary time in children/adolescents,adults,and older adults across the Nordic countries are presented.Conclusion:A growing implementation of device-based population surveillance of physical activity and sedentary behavior in the Nordic countries has been identified.The variety of devices,placement,and data procedures both within and between the Nordic countries highlights the challenges when it comes to comparing study outcomes as well as the need for more standardized data collection.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-003Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences,No.2021-1-I2M-015the Peking Union Medical College Hospital Undergraduate Educational Reform Project,No.2020zlgc0116 and No.2023kcsz004.
文摘BACKGROUND Postoperative pulmonary complications(PPCs)are common in patients who undergo colorectal surgery.Studies have focused on how to accurately diagnose and reduce the incidence of PPCs.Lung ultrasound has been proven to be useful in preoperative monitoring and postoperative care after cardiopulmonary surgery.However,lung ultrasound has not been studied in abdominal surgeries and has not been used with wearable devices to evaluate the influence of postoperative ambulation on the incidence of PPCs.AIM To investigate the relationship between lung ultrasound scores,PPCs,and postoperative physical activity levels in patients who underwent colorectal surgery.METHODS In this prospective observational study conducted from November 1,2019 to August 1,2020,patients who underwent colorectal surgery underwent daily bedside ultrasonography from the day before surgery to postoperative day(POD)5.Lung ultrasound scores and PPCs were recorded and analyzed to investigate their relationship.Pedometer bracelets measured the daily movement distance for 5 days post-surgery,and the correlation between postoperative activity levels and lung ultrasound scores was examined.RESULTS Thirteen cases of PPCs was observed in the cohort of 101 patients.The mean(standard deviation)peak lung ultrasound score was 5.32(2.52).Patients with a lung ultrasound score of≥6 constituted the high-risk group.High-risk lung ultrasound scores were associated with an increased incidence of PPCs after colorectal surgery(logistic regression coefficient,1.715;odds ratio,5.556).Postoperative movement distance was negatively associated with the lung ultrasound scores[Spearman’s rank correlation coefficient(r),-0.356,P<0.05].CONCLUSION Lung ultrasound effectively evaluates pulmonary condition post-colorectal surgery.Early ambulation and respiratory exercises in the initial two PODs will reduce PPCs and optimize postoperative care in patients undergoing colorectal surgery.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
基金the Engineering Research Center of Integrated Circuits for Next-Generation Communications Grant(Y01796303)Southern University of Science and Technology Grant(Y01796108,Y01796208).
文摘With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.
基金Australian Research Council,Grant/Award Numbers:DP190100120,FT200100015。
文摘Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations.
文摘Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.
文摘This paper presents a design of new type of multi-parameter wearable medical devices signal processing platform. The signal processing algorithm has a QRS-wave detection algorithm based on LADT, wavelet transformation and threshold detection with TMS320VC5509 DSP system. The DSP can greatly increase the speed of QRS-wave detection, and the results can be practical used for multi-parameter wearable device detection of abnormal ECG.
基金The Special Project of Science and technology benefit the people of Ningxia Hui Autonomous Region(2018CMG03015)。
文摘Objective:To study the value of the wearable single-lead remote monitoring device with the scatterplot in chronic disease management.Methods:dmitted into 435 residents accord with the inclusion criteria of 20 primary medical institutions of Yinchuan city,and grouped voluntarily by the implementation schemes were grouped voluntarily according to the implementation schemes.According to one of the three implementation schemes selected,the general practitioner guided the subjects to take on the wearable single-lead remote monitoring device,collecting and uploading the EEG data,then diagnosed and analyzed by the synchronously generated ECG scatterplot,finally,summarized the incidence and the categories,analyzed the differences among these three groups.Results:Among 435 subjects,there were 61 normal patients and 374 arrhythmias with the detection rate of 85.98%;and among the 1672 data collected,there were 606 normal data and 1066 arrhythmia with the detection rate of 63.76%;880 data in total 333 cases with atrial premature beat;442 data in total 215 cases with occasional ventricular premature beat;37 data of 22 cases with frequent atrial beat;65 data of 28 cases with frequent ventricular premature beat;13 data of 6 cases with atrial fibrillation;25 data of 15 cases with excitation conduction disorder;2 data of 2 cases with atrial flutter;31 data of 19 cases with ventricular tachycardia;30 data of 16 cases with conduction block;and 14 data of 8 cases with Para systolic rhythm.comparing the detection rate of arrhythmia in three groups,the difference was not statistically significant(P>0.05).Conclusion:The wearable singlelead remote monitoring device with the scatterplot has high application value in cardiovascular chronic disease management.Its effectively screening,validly diagnosing and detailed classifying are helpful to the early intervention,and the protection of the patients’lives.
文摘Health is an inevitable demand to promote people's all-round development and to make foundation for economic and social development. Health and longevity of citizens is not only important symbols of national development and prosperity but also the common wish of the Chinese people. Actually,smart wearable technology is an emerging one and the application of some smart wearable devices such as health watch is the most promising one in the health industry. As new psychotherapy,cognitive behavioral therapy( CBT) can change the poor awareness by means of changing one's way of thinking,thus eliminating the unhealthy emotions and behaviors. In terms of health management,CBT enjoys such advantages as guidance,motivation,integrity and short therapy time. This paper introduces the improvement of smart wearable device guided by professional health management solutions on individual health by taking Philips health watch as an example,and the users can therefrom get full understanding of the relationship between smart wearable devices and health,thus improving their individual health.
文摘Semi-invasive blood sampling devices mimic the way female mosquitoes extract blood from a host. They generally consist of a microneedle, a microactuator for needle insertion, a blood extraction mechanism and a blood glucose sensor. These devices have great potential to overcome the major disadvantages of several current blood glucose monitoring methods. Over last two decades, extensive research has been made in all of these related fields. More recently, several wearable devices for semi-invasive blood sampling have been developed. This review aims at summarizing the current state-of-the-art development and utilization of such wearable devices for continuous monitoring of blood glucose levels, with a special attention on design considerations, fabrication technologies and testing methods.
文摘From an empirical point of view,this paper proposes research hypotheses and models based on the market situation of Xiaomi smart wearable devices in Guangxi,as well as the research status of consumers’purchasing decisions,combined with the empirical research of some researchers.This paper designs questionnaires and scales.The sampling survey method is used to investigate and analyze the influencing factors of Guangxi consumers’decision to purchase Xiaomi smart wearable devices.Questionnaires were distributed through Questionnaire Star,and 385 valid questionnaires were collected for descriptive statistics and correlation analysis.Conclusions are as follow:(1)Consumers in Guangxi who purchase Xiaomi smart wearable devices are between 19 and 32 years old,and most of them have a bachelor’s degree.Among the five factors of demographic characteristics,only income and marketing mix satisfaction have a positive correlation,indicating that customers are sensitive to Xiaomi smart wearable products.And among the customers of Xiaomi smart wearable products,the monthly income of less than 5,000 yuan accounted for 30.91%of the total number of surveys;the monthly income was 5,000-7,000 yuan,accounting for 34.29%.(2)The satisfaction of the marketing mix is positively correlated with the satisfaction of customer decision-making.The satisfaction of the marketing mix varies with the age,gender,education,income,and working years of each population,and only the income is positively correlated with the satisfaction of the marketing mix.Relationships,age,gender,education,and years of employment were not associated with marketing mix satisfaction.According to the above conclusions,relevant and reasonable product development and marketing suggestions are put forward for the enterprise,which provides a reference for the enterprise’s brand building and market development.Therefore,on the basis of comparing with other scholars at home and abroad,through the 7P marketing theory and purchasing decision theory and the research on the current situation of influencing factors for customers to purchase Xiaomi smart wearable devices in Guangxi,this paper compiled a questionnaire for 385 private colleges and universities in Guangxi.A questionnaire survey was carried out with customers,and the current situation of customers’purchasing decision-making behavior was obtained and analyzed and the following suggestions were put forward:continuously innovating products,targeting target customers,reasonably setting product prices,improving marketing mix.
基金supported by the National Natural Science Foundation of China under the grant number 51541503,50775165,and 51775389the project of Hubei Digital Textile Equipment Key Laboratory DTL2016004.
文摘We are developing a novel wearable devices called the urban intelligent fashion advertising.Such system is mobile information devices capable of supporting remote communication and intelligent interaction between terminals.In this paper,we explore the possible functions of such a wearable devices and will present the service-based architecture combing the hardware and the software.This architecture involves two major parts.The first part is hardware design,which includes microcontroller,display part,communication module,and positioning system module.The second part is software design,which is a real-time interactive system that includes signal reception,position detection,and user workload assessment.Then,we use the interactive concept and interactive technology to construct the urban fashion advertising service model,and elaborate on its business model.Finally,we present sustainability development recommendations for the proposed service model.
文摘According to Q2 Report on China’s Wearable Device Market,China’s wearable devices in Q2 2016 saw an output of 9.54 million units,up 13.2%month-on-month and 81.4%yearon-year.The basic wearable devices representing by wristband,children watch and smart shoes increased by92.1%year-on-year and the smart wearable devices represented by smart watch increased by 3.4%year-on-year.'Unlike the overseas