Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per...Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.展开更多
Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible p...Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.展开更多
Persistent inflammatory responses often occur when bacteria and other microorganisms frequently invade and colonize open wounds and eventually result in the formation of chronic wounds.Therefore,achieving real-time de...Persistent inflammatory responses often occur when bacteria and other microorganisms frequently invade and colonize open wounds and eventually result in the formation of chronic wounds.Therefore,achieving real-time detection of invasive bacteria accurately and promptly is essential for efficient wound management and accelerat-ing the healing process.Recently,flexible wearable sensors have garnered significant attention,especially those designed for monitoring real-time biophysical or biochemical signals in wound sites in a minimally invasive manner.They provide more precise and continuous monitoring data,making them as emerging tools for clinical diagnostics.In this review,we first discuss the species and community distribution of different types of bacteria in chronic wounds.Next,we introduce currently developed techniques for detecting bacteria at wound sites.Fol-lowing that,we discuss the recent progress and unresolved issues of various flexible wearable sensors in detecting bacteria at wound sites.We believe that this review can provide meaningful guidance for the development of flexible wearable sensors for bacteria detection.展开更多
The human skin inspired soft electronic devices have attracted broadly research attention in the past decades as the promising potential applications in health monitoring and diagnosis,robotics,and prosthetics.The sof...The human skin inspired soft electronic devices have attracted broadly research attention in the past decades as the promising potential applications in health monitoring and diagnosis,robotics,and prosthetics.The soft wearable piezoresistivity pressure sensor is one of the most attractive candidates for the development of advanced electronic skin for its simple mechanism,compact structure,low cost and power energy consumption and ease of signal acquisition and transforms advantages.In this review,we will explore the recent progress and achievements in the field of piezoresistivity pressure sensor,focusing on the fundamentals of the piezoresistivity pressure sensor and the materials related to the devices,including active materials,substrate materials,and electrode materials.Subsequently,the challenges and outlook are discussed.We list several current challenges perspectives on the development of pressure sensors.Several critical topics for the optimization of the sensitivity and working range of sensing devices toward practical applications are discussed.Finally,perspectives on the slip and force vectors sensors,the developing technologies for multi-function and high-resolution sensor systems and signals process technologies are examined to highlight the near future development tendency in piezoresistivity pressure sensor research field.展开更多
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible str...With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.展开更多
Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Thi...Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things(IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion(such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy(BLE), Wi-Fi, and radio frequency identification(RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics.展开更多
The development of smart textiles has presentend new requirements for integrated devices that can be compatible with both conductivity and deformation.At room temperature,liquid metal presents both metallic properties...The development of smart textiles has presentend new requirements for integrated devices that can be compatible with both conductivity and deformation.At room temperature,liquid metal presents both metallic properties and flexible properties,as well as low toxicity and biocompatible,which makes it more and more popular on the research of liquid metal based electronic devices.This review summarizes the basic physical properties,and the key points to be fabricated into fibers and fabrics including oxides and wettability.Meantime,the application in the field of textiles is presented.Liquid metal based electrical conductive fibers and flexible sensors can be fabricated mainly by injection and printing,as well as direct-writing for smart fabrics.Liquid metal can be integrated as functional components for smart wearable devices in the future by assembling the as-prepared fibers and fabrics with textile technology,such as twisting,sewing,knitting,and embroidering.展开更多
介绍了基于有机场效应晶体管(organic field effect transistor,OFET)技术的柔性半导体器件的工作原理和发展概况,综述了基于OFET的生物力学监测设备、文身生物监测设备、细胞检测设备等可穿戴柔性监测设备的研究现状,分析了基于OFET的...介绍了基于有机场效应晶体管(organic field effect transistor,OFET)技术的柔性半导体器件的工作原理和发展概况,综述了基于OFET的生物力学监测设备、文身生物监测设备、细胞检测设备等可穿戴柔性监测设备的研究现状,分析了基于OFET的可穿戴柔性监测设备存在的不足,指出了微型化、个性化、多元化等是未来基于OFET的可穿戴柔性监测设备的发展方向。展开更多
With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electron...With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electronic devices.Among these intelligent devices,fexible and stretchable strain sensors have been widely studied for their good fexibility,high sensitivity,high repeatability and huge potential for application in personal healthcare and motion detection.Moreover,unlike traditional rigid bulky sensors,the high-performance fexible strain sensors are lightweight portable devices with excellent mechanical and electrical performance,which can meet personalized needs and become more popular.Herein,the research progress of fexible strain sensors in recent years are reviewed,which mainly introducing the sensing principles and key parameters of strain sensors,commonly used conductive materials and fexible substrates and common preparation methods,and fnally proposes the future application and prospects of strain sensors.展开更多
基金This work was supported by the NSFC(22075019,22035005)the Young Talent Program of Henan Agricultural University(30500601).
文摘Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications.
基金supported by the National Key R&D Program of China(Nos.2022 YFF 1202700 and 2022YFB3203500)National Natural Science Foundation of China(Nos.62225403,62375046,51973024,an d U19A2091)+2 种基金“111”Project(No.B13013)Natur al Sci ence Foundation of Jilin Pro vin ce(No.20230101113JC)the Funding from Jilin Pr ovince(No.20220502002GH).
文摘Recently,electronic skins and fl exible wearable devices have been developed for widespread applications in medical monitoring,artifi cial intelligence,human–machine interaction,and artifi cial prosthetics.Flexible proximity sensors can accurately perceive external objects without contact,introducing a new way to achieve an ultrasensitive perception of objects.This article reviews the progress of fl exible capacitive proximity sensors,fl exible triboelectric proximity sensors,and fl exible gate-enhanced proximity sensors,focusing on their applications in the electronic skin fi eld.Herein,their working mechanism,materials,preparation methods,and research progress are discussed in detail.Finally,we summarize the future challenges in developing fl exible proximity sensors.
基金supported by the National Natural Science Foundation of China(22205260,82172211,92268206)National Key Research and Development Programs of China(2022YFA1104303)+1 种基金the CAMS Innova-tion Fund for Medical Sciences(CIFMS,2019-I2M-5-059)the Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZB-09600,2023-JSKY-SSQG-006).
文摘Persistent inflammatory responses often occur when bacteria and other microorganisms frequently invade and colonize open wounds and eventually result in the formation of chronic wounds.Therefore,achieving real-time detection of invasive bacteria accurately and promptly is essential for efficient wound management and accelerat-ing the healing process.Recently,flexible wearable sensors have garnered significant attention,especially those designed for monitoring real-time biophysical or biochemical signals in wound sites in a minimally invasive manner.They provide more precise and continuous monitoring data,making them as emerging tools for clinical diagnostics.In this review,we first discuss the species and community distribution of different types of bacteria in chronic wounds.Next,we introduce currently developed techniques for detecting bacteria at wound sites.Fol-lowing that,we discuss the recent progress and unresolved issues of various flexible wearable sensors in detecting bacteria at wound sites.We believe that this review can provide meaningful guidance for the development of flexible wearable sensors for bacteria detection.
基金the support of national key R&D project from Minister of Science and Technology,China(2016YFA0202703)National Natural Science Foundation of China(No.51622205,61675027,51432005,61505010 and 51502018)+2 种基金Beijing City Committee of science and technology(Z171100002017019 and Z181100004418004)Natural Science Foundation of Beijing Municipality(4181004,4182080,4184110,2184131 and Z180011)the University of Chinese Academy of Sciences.
文摘The human skin inspired soft electronic devices have attracted broadly research attention in the past decades as the promising potential applications in health monitoring and diagnosis,robotics,and prosthetics.The soft wearable piezoresistivity pressure sensor is one of the most attractive candidates for the development of advanced electronic skin for its simple mechanism,compact structure,low cost and power energy consumption and ease of signal acquisition and transforms advantages.In this review,we will explore the recent progress and achievements in the field of piezoresistivity pressure sensor,focusing on the fundamentals of the piezoresistivity pressure sensor and the materials related to the devices,including active materials,substrate materials,and electrode materials.Subsequently,the challenges and outlook are discussed.We list several current challenges perspectives on the development of pressure sensors.Several critical topics for the optimization of the sensitivity and working range of sensing devices toward practical applications are discussed.Finally,perspectives on the slip and force vectors sensors,the developing technologies for multi-function and high-resolution sensor systems and signals process technologies are examined to highlight the near future development tendency in piezoresistivity pressure sensor research field.
基金supported by the NNSF of China(Nos.61525402,61604071)the Key University Science Research Project of Jiangsu Province(No.15KJA430006)the Natural Science Foundation of Jiangsu Province(No.BK20161012)
文摘With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.
文摘Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things(IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion(such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy(BLE), Wi-Fi, and radio frequency identification(RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics.
基金National Natural Science Foundation of China(No.51672141)Natural Science Foundation of Shandong Province of China(No.ZR2018QEM004)+2 种基金Research and Development Program of Shandong Province of China(Nos.2019GGXI02022,2019JZZY010340,2019JZZY010335)Anhui Province Special Science and Technology Project,China(No.201903a05020028)Shandong Provincial Universities Youth Technology Plan Innovation Team,China(No.2020KJA013)。
文摘The development of smart textiles has presentend new requirements for integrated devices that can be compatible with both conductivity and deformation.At room temperature,liquid metal presents both metallic properties and flexible properties,as well as low toxicity and biocompatible,which makes it more and more popular on the research of liquid metal based electronic devices.This review summarizes the basic physical properties,and the key points to be fabricated into fibers and fabrics including oxides and wettability.Meantime,the application in the field of textiles is presented.Liquid metal based electrical conductive fibers and flexible sensors can be fabricated mainly by injection and printing,as well as direct-writing for smart fabrics.Liquid metal can be integrated as functional components for smart wearable devices in the future by assembling the as-prepared fibers and fabrics with textile technology,such as twisting,sewing,knitting,and embroidering.
文摘基于光电容积脉搏波描记法(Photo Plethysmo Graphy,PPG)的柔性传感器可进行心率(Heart Rate,HR)和血压(Blood Pressure,BP)检测,但是对其检测结果的标定报道甚少.据此,本文提出一种基于模拟血液循环的反射式PPG心率检测和血压标定系统.以蠕动泵来产生脉动流,通过调节其转速的大小来控制模拟血液输送的频率和压力,从而引起弹性乳胶管内模拟血液体积的变化,而改变反射光的信号周期与强度,贴近于人体脉搏测量过程的实际场景.该系统心率检测误差均值为0.27778,95%一致性界限为(-2.59562,3.15117),所测收缩压(Systolic Blood Pressure,SBP)和舒张压(Diastolic Blood Pressure,DBP)的拟合优度分别为0.97185和0.98111.经标定后的柔性PPG传感器对4名志愿者检测的SBP和DBP的平均偏差(Mean Deviation,MD)±标准差(Standard Deviation,SD)均值分别为(1.21±2.16)mmHg和(0.76±2.02)mmHg,均符合且远小于美国医疗仪器促进协会(Association for the Advancement of Medical Instrumentation,AAMI)所制定的衡量血压计精度的标准指标(5±8)mmHg.结果表明,该系统能够准确高效地标定柔性PPG传感器,为实现便携式可穿戴设备的精准血压检测提供标定基础.
文摘介绍了基于有机场效应晶体管(organic field effect transistor,OFET)技术的柔性半导体器件的工作原理和发展概况,综述了基于OFET的生物力学监测设备、文身生物监测设备、细胞检测设备等可穿戴柔性监测设备的研究现状,分析了基于OFET的可穿戴柔性监测设备存在的不足,指出了微型化、个性化、多元化等是未来基于OFET的可穿戴柔性监测设备的发展方向。
基金Financial support of this work was provided by Natural Science Foundation of Shandong Province of China(ZR2018QEM004,ZR2020QE081)Shandong Province Key Research and Development Plan(Major scientifc and technological innovation projects)(2019JZZY010340,2019JZZY010335,2019GGX102022)China Postdoctoral Science Foundation via grant No.2020M671994.
文摘With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electronic devices.Among these intelligent devices,fexible and stretchable strain sensors have been widely studied for their good fexibility,high sensitivity,high repeatability and huge potential for application in personal healthcare and motion detection.Moreover,unlike traditional rigid bulky sensors,the high-performance fexible strain sensors are lightweight portable devices with excellent mechanical and electrical performance,which can meet personalized needs and become more popular.Herein,the research progress of fexible strain sensors in recent years are reviewed,which mainly introducing the sensing principles and key parameters of strain sensors,commonly used conductive materials and fexible substrates and common preparation methods,and fnally proposes the future application and prospects of strain sensors.