期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of a Wearable Upper Limb Rehabilitation Robot Based on Reinforced Soft Pneumatic Actuators 被引量:1
1
作者 Xinbo Chen Shuai Zhang +3 位作者 Kaibin Cao Chunjie Wei Wumian Zhao Jiantao Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期182-190,共9页
Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation... Dyskinesia of the upper limbs caused by stroke,sports injury,or trafc accidents limits the ability to perform the activities of daily living.Besides the necessary medical treatment,correct and scientifc rehabilitation training for the injured joint is an important auxiliary means during the treatment of the efected upper limb.Conventional upperlimb rehabilitation robots have some disadvantages,such as a complex structure,poor compliance,high cost,and poor portability.In this study,a novel soft wearable upper limb rehabilitation robot(SWULRR)with reinforced soft pneumatic actuators(RSPAs)that can withstand high pressure and featuring excellent loading characteristics was developed.Driven by RSPAs,this portable SWULRR can perform rehabilitation training of the wrist and elbow joints.In this study,the kinematics of an SWULRR were analyzed,and the force and motion characteristics of RSPA were studied experimentally.The results provide a reference for the development and application of wearable upper limb rehabilitation robots.An experimental study on the rotation angle of the wrist and the pressure of the RSPA was conducted to test the efect of the rehabilitation training and verify the rationality of the theoretical model.The process of wrist rehabilitation training was tested and evaluated,indicating that SWULRR with RSPAs will enhance the fexibility,comfort,and safety of rehabilitation training.This work is expected to promote the development of wearable upper-limb rehabilitation robots based on modular reinforced soft pneumatic actuators. 展开更多
关键词 Upper limb rehabilitation Reinforced soft pneumatic actuator wearable rehabilitation robot Motion analysis
下载PDF
RLSESN-based PID adaptive control for a novel wearable rehabilitation robotic hand driven by PM-TS actuators
2
作者 Jun Wu Jian Huang +1 位作者 Yongji Wang Kexin Xing 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第1期91-110,共20页
Purpose-The purpose of this paper is to develop a novel wearable rehabilitation robotic hand driven by Pneumatic Muscle-Torsion Spring(PM-TS)for finger therapy.PM has complex nonlinear dynamics,which makes PM modellin... Purpose-The purpose of this paper is to develop a novel wearable rehabilitation robotic hand driven by Pneumatic Muscle-Torsion Spring(PM-TS)for finger therapy.PM has complex nonlinear dynamics,which makes PM modelling difficult.To realize high-accurate tracking for the robotic hand,an Echo State Network(ESN)-based PID adaptive controller is proposed,even though the plant model is unknown.Design/methodology/approach-To drive a single joint of rehabilitation robotic hand,the paper proposes a new PM-TS actuator comprising a Pneumatic Muscle(PM)and a Torsion Spring(TS).Based on the novel actuator,a wearable robotic hand is designed.By employing the model-free approximation capability of ESN,the RLSESN based PID adaptive controller is presented for improving the trajectory tracking performance of the rehabilitation robotic hand.An ESN together with Recursive Least Square(RLS)is called a RLSESN,where the ESN output weight matrix is updated by the online RLS learning algorithm.Findings–Practical experiments demonstrate the validity of the PM-TS actuator and indicate that the performance of the RLSESN based PID adaptive controller is better than that of the conventional PID controller.In addition,they also verify the effectiveness of the proposed rehabilitation robotic hand.Originality/value–A new PM-TS actuator configuration that uses a PM and a torsion spring for bi-directional movement of joint is presented.By utilizing the new PM-TS actuator,a novel wearable rehabilitation robotic hand for finger therapy is designed.Based on the unknown plant model,the RLSESN_PID controller is proposed to attain satisfactory performance. 展开更多
关键词 robotICS Control systems Controllers Actuators Adaptive system theory wearable rehabilitation robotic hand Echo state network Pneumatic muscle Trajectory tracking
原文传递
Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot 被引量:2
3
作者 Wanting Li Keping Liu +3 位作者 Chunxu Li Zhongbo Sun Shui Liu Jian Gu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第3期688-699,共12页
This paper introduces a rigid-flexible coupling wearable exoskeleton robot for lower limb,which is designed in light of gait biomechanics and beneficial for low limb movement disorders by implementing gait training.Th... This paper introduces a rigid-flexible coupling wearable exoskeleton robot for lower limb,which is designed in light of gait biomechanics and beneficial for low limb movement disorders by implementing gait training.The rationality of the proposed mechanism is shown with the implementation of the dynamic simulation through MSC ADAMS.For the purposes of lightweight,the exoskeleton mechanism is optimized through finite element analysis.It can be concluded from performance evaluation experiment,the mechanism has certain advantages over existing exoskeleton robots,namely,comfortable,lightweight,low cost,which can be utilized for rehabilitation training in medical institutions or as a daily-walking ancillary equipment for patients. 展开更多
关键词 wearable rehabilitation robot BIOMECHANICS robot mechanism design Virtual analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部