期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor
1
作者 Sakorn Mekruksavanich Narit Hnoohom Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2669-2686,共18页
Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearabl... Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments.Consequently,researchers have demon-strated considerable passion for developing cutting-edge deep learning sys-tems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts.This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called Sen-PyramidNet and motion information from wearable sensors(accelerometer and gyroscope).The suggested technique develops a residual unit based on a deep pyramidal residual network and introduces the concept of a pyramidal residual unit to increase detection capability.The proposed deep learning-based model was assessed using the publicly available 19Nonsens dataset,which gathered motion signals from various indoor and outdoor activities,including practicing various body parts.The experimental findings demon-strate that the proposed approach can efficiently reuse characteristics and has achieved an identification accuracy of 96.37%for indoor and 97.25%for outdoor activity.Moreover,comparison experiments demonstrate that the SenPyramidNet surpasses other cutting-edge deep learning models in terms of accuracy and F1-score.Furthermore,this study explores the influence of several wearable sensors on indoor and outdoor action recognition ability. 展开更多
关键词 Human activity recognition deep learning wearable sensors indoor and outdoor activity deep pyramidal residual network
下载PDF
Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors 被引量:1
2
作者 Yiming Zhao Hongsheng Zhao +5 位作者 Zhili Wei Jie Yuan Jie Jian Fankai Kong Haojiang Xie Xingliang Xiong 《Journal of Renewable Materials》 SCIE EI 2022年第11期2729-2746,共18页
The flexible wearable sensors with excellent stretchability,high sensitivity and good biocompatibility are significantly required for continuously physical condition tracking in health management and rehabilitation mo... The flexible wearable sensors with excellent stretchability,high sensitivity and good biocompatibility are significantly required for continuously physical condition tracking in health management and rehabilitation monitoring.Herein,we present a high-performance wearable sensor.The sensor is prepared with nanocomposite hydrogel by using silk fibroin(SF),polyacrylamide(PAM),polydopamine(PDA)and graphene oxide(GO).It can be used to monitor body motions(including large-scale and small-scale motions)as well as human electrophysiological(ECG)signals with high sensitivity,wide sensing range,and fast response time.Therefore,the proposed sensor is promising in the fields of rehabilitation,motion monitoring and disease diagnosis. 展开更多
关键词 Acrylic amide silk fibroin graphene oxide wearable sensor flexible strain sensor
下载PDF
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging
3
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system wearable inertial sensors Ultrasonic ranging Deep-learning Data and model dual-driven
下载PDF
A Novel Method for Cross-Subject Human Activity Recognition with Wearable Sensors
4
作者 Qi Zhang Feng Jiang +4 位作者 Xun Wang Jinnan Duan Xiulai Wang Ningling Ma Yutao Zhang 《Journal of Sensor Technology》 2024年第2期17-34,共18页
Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recogn... Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots. 展开更多
关键词 Human Activity Recognition Cross-Subject Adaptation Semi-Supervised Learning wearable sensors
下载PDF
Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors 被引量:1
5
作者 Yibing Luo Jianye Li +3 位作者 Qiongling Ding Hao Wang Chuan Liu Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期103-147,共45页
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ... Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed. 展开更多
关键词 Health and safety monitoring Gas and humidity sensor Functionalized hydrogel wearable sensor Flexible and stretchable sensor
下载PDF
Wearable sensors for activity monitoring and motion control:A review
6
作者 Xiaoming Wang Hongliu Yu +2 位作者 Soren Kold Ole Rahbek Shaoping Bai 《Biomimetic Intelligence & Robotics》 2023年第1期1-10,共10页
Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews sta... Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews state-of-the-art wearable sensors for activity monitoring and motion control.Different technologies,including electromechanical,bioelectrical,and biomechanical sensors,are reviewed,along with their broad applications.Moreover,an overview of existing commercial wearable products and the computation methods for motion analysis are provided.Future research issues are identified and discussed. 展开更多
关键词 wearable sensor Activity monitoring and tracking Intelligent motion control Human–machine interface
原文传递
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
7
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 wearable strain sensors Conductive polymer composites MECHANISM Sensing performance
下载PDF
Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors
8
作者 Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2111-2128,共18页
The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new wor... The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturingfirm are vital for the rapid and accurate diagnosis of work performance,particularly during the training of a new worker.Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques.Despite widespread com-puter vision-based approaches,it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where cam-era deployment is problematic.Through the use of wearable inertial sensors,we propose a deep learning method for automatically recognizing the activities of construction workers.The suggested method incorporates a convolutional neural network,residual connection blocks,and multi-branch aggregate transformation modules for high-performance recognition of complicated activities such as con-struction worker tasks.The proposed approach has been evaluated using standard performance measures,such as precision,F1-score,and AUC,using a publicly available benchmark dataset known as VTT-ConIoT,which contains genuine con-struction work activities.In addition,standard deep learning models(CNNs,RNNs,and hybrid models)were developed in different empirical circumstances to compare them to the proposed model.With an average accuracy of 99.71%and an average F1-score of 99.71%,the experimentalfindings revealed that the suggested model could accurately recognize the actions of construction workers.Furthermore,we examined the impact of window size and sensor position on the identification efficiency of the proposed method. 展开更多
关键词 Complex human activity recognition wearable inertial sensors deep learning construction workers automatic recognition
下载PDF
One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors 被引量:2
9
作者 Bing-Chang Zhang Jian-Sheng Jie +3 位作者 Zhi-Bin Shao Si-Yi Huang Le He Xiao-Hong Zhang 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2723-2728,共6页
Silicon nanowire(SiNW)fabrics are of great interest for fabricating high-performance multifunctional wearable sensors.However,it remains a big challenge to fabricate high-quality SiNW fabrics in a simple and efficient... Silicon nanowire(SiNW)fabrics are of great interest for fabricating high-performance multifunctional wearable sensors.However,it remains a big challenge to fabricate high-quality SiNW fabrics in a simple and efficient manner.Here we report,for the first time,one-step growth of large-area SiNW fabrics for multifunctional wearable sensors,by using a massive metal-assisted chemical vapor deposition(CVD)method.With bulk Sn as a catalyst source,numerous millimeter-long SiNWs grow and naturally interweave with each other,forming SiNw fabrics over 80 cm2 in one experiment.In addition to intrinsic electronic properties of Si materials,the SiNw fabrics also feature high flxibility,good tailorability and light weight,rendering them ideal for fabricating multifunctional wearable sensors.The prototype sensors based on the SiNW fabrics could efectively detect various stimuli including temperature,light,strain and pressure,with outstanding performance among reported multifunctional sensors.We further demonstrate the integration of the prototype sensors onto the body of a robot,enabling its perception to various environmental stimuli.The ability to prepare high-quality SiNW fabrics in a simple and eficient manner will stimulate the development of wearable devices for applications in portable electronics,Internet of Things,health care and robotics. 展开更多
关键词 silicon nanowires FABRICS wearable devices multifunctional wearable sensors
原文传递
Development of smart wearable sensors for life healthcare 被引量:1
10
作者 Haoxi Luo Bingbing Gao 《Engineered Regeneration》 2021年第1期163-170,共8页
Wearable biosensors are gaining tremendous interest in the clinical and biological medical fields for their potential in providing patients with real-time diagnostic tools and time-sensitive information,non-invasive m... Wearable biosensors are gaining tremendous interest in the clinical and biological medical fields for their potential in providing patients with real-time diagnostic tools and time-sensitive information,non-invasive measurements of biochemical markers distributed in body fluids throughout the body.These sensors replace part of the equipment that can only be installed in hospitals and become a new choice for assessing human health.Herein,critical perspectives are put forward regarding wearable sensors in the future digital health monitoring industry.Moreover,the materials and processing technologies involved have also been discussed in recent years,along with their monitoring schemes and system-level integration technologies.Finally,the probability of wearable sensors being used in early disease detection is considerable.Thus,despite potential challenges,it is still quite promising for wearable sensors to come into production. 展开更多
关键词 Smart sensor wearable electronics wearable sensor Stretchable electronics Healthcare
原文传递
Laser direct writing of Ga_(2)O_(3)/liquid metal-based flexible humidity sensors 被引量:2
11
作者 Songya Cui Yuyao Lu +5 位作者 Depeng Kong Huayu Luo Liang Peng Geng Yang Huayong Yang Kaichen Xu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第7期30-39,共10页
Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible ... Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring. 展开更多
关键词 laser direct writing liquid metal humidity sensors flexible electronics wearable sensors
下载PDF
Engineering Smart Composite Hydrogels for Wearable Health Monitoring 被引量:1
12
作者 Jianye Li Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Xuchun Gui Chunwei Li Ning Hu Kai Tao Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期233-277,共45页
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene... Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring. 展开更多
关键词 wearable health monitoring Smart composite hydrogel Hydrogel engineering wearable sensor Flexible and stretchable sensors
下载PDF
Pre-Impact and Impact Fall Detection Based on a Multimodal Sensor Using a Deep Residual Network
13
作者 Narit Hnoohom Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3371-3385,共15页
Falls are the contributing factor to both fatal and nonfatal injuries in the elderly.Therefore,pre-impact fall detection,which identifies a fall before the body collides with the floor,would be essential.Recently,rese... Falls are the contributing factor to both fatal and nonfatal injuries in the elderly.Therefore,pre-impact fall detection,which identifies a fall before the body collides with the floor,would be essential.Recently,researchers have turned their attention from post-impact fall detection to pre-impact fall detection.Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach,although the threshold value would be difficult to accu-rately determine in threshold-based methods.Moreover,while additional features could sometimes assist in categorizing falls and non-falls more precisely,the esti-mated determination of the significant features would be too time-intensive,thus using a significant portion of the algorithm’s operating time.In this work,we developed a deep residual network with aggregation transformation called FDSNeXt for a pre-impact fall detection approach employing wearable inertial sensors.The proposed network was introduced to address the limitations of fea-ture extraction,threshold definition,and algorithm complexity.After training on a large-scale motion dataset,the KFall dataset,and straightforward evaluation with standard metrics,the proposed approach identified pre-impact and impact falls with high accuracy of 91.87 and 92.52%,respectively.In addition,we have inves-tigated fall detection’s performances of three state-of-the-art deep learning models such as a convolutional neural network(CNN),a long short-term memory neural network(LSTM),and a hybrid model(CNN-LSTM).The experimental results showed that the proposed FDSNeXt model outperformed these deep learning models(CNN,LSTM,and CNN-LSTM)with significant improvements. 展开更多
关键词 Pre-impact fall detection deep learning wearable sensor deep residual network
下载PDF
Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors
14
作者 Narit Hnoohom Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 2023年第11期139-151,共13页
Accidents are still an issue in an intelligent transportation system,despite developments in self-driving technology(ITS).Drivers who engage in risky behavior account for more than half of all road accidents.As a resu... Accidents are still an issue in an intelligent transportation system,despite developments in self-driving technology(ITS).Drivers who engage in risky behavior account for more than half of all road accidents.As a result,reckless driving behaviour can cause congestion and delays.Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem.Previous research has also collected and analyzed a wide range of data,including electroencephalography(EEG),electrooculography(EOG),and photographs of the driver’s face.On the other hand,driving a car is a complicated action that requires a wide range of body move-ments.In this work,we proposed a ResNet-SE model,an efficient deep learning classifier for driving activity clas-sification based on signal data obtained in real-world traffic conditions using smart glasses.End-to-end learning can be achieved by combining residual networks and channel attention approaches into a single learning model.Sensor data from 3-point EOG electrodes,tri-axial accelerometer,and tri-axial gyroscope from the Smart Glasses dataset was utilized in this study.We performed various experiments and compared the proposed model to base-line deep learning algorithms(CNNs and LSTMs)to demonstrate its performance.According to the research results,the proposed model outperforms the previous deep learning models in this domain with an accuracy of 99.17%and an F1-score of 98.96%. 展开更多
关键词 Smart glasses human activity recognition deep learning wearable sensors driving activity
下载PDF
Functionalized Fiber-Based Strain Sensors:Pathway to Next-Generation Wearable Electronics 被引量:6
15
作者 Zekun Liu Tianxue Zhu +4 位作者 Junru Wang Zijian Zheng Yi Li Jiashen Li Yuekun Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期90-128,共39页
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artific... Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artificial intelligence,and so forth.Much research has focused on fiber-based sensors due to the appealing performance of fibers,including processing flexibility,wearing comfortability,outstanding lifetime and serviceability,low-cost and large-scale capacity.Herein,we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors.We describe the approaches for preparing conductive fibers such as spinning,surface modification,and structural transformation.We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits.The applications toward motion detection,healthcare,man-machine interaction,future entertainment,and multifunctional sensing are summarized with typical examples.We finally critically analyze tough challenges and future remarks of fiber-based strain sensors,aiming to implement them in real applications. 展开更多
关键词 wearable strain sensor Fiber functionalization WEARABILITY Flexible electronics Conductive materials
下载PDF
Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators 被引量:2
16
作者 Fengxin Sun Yongsheng Zhu +3 位作者 Changjun Jia Tianming Zhao Liang Chu Yupeng Mao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期477-488,共12页
The new era of the internet of things brings great opportunities to the field of intelligent sports.The collection and analysis of sports data are becoming more intelligent driven by the widely-distributed sensing net... The new era of the internet of things brings great opportunities to the field of intelligent sports.The collection and analysis of sports data are becoming more intelligent driven by the widely-distributed sensing network system.Triboelectric nanogenerators(TENGs)can collect and convert energy as selfpowered sensors,overcoming the limitations of external power supply,frequent power replacement and high-cost maintenance.Herein,we introduce the working modes and principles of TENGs,and then summarize the recent advances in self-powered sports monitoring sensors driven by TENGs in sports equipment facilities,wearable equipment and competitive sports specialities.We discuss the existing issues,i.e.,device stability,material sustainability,device design rationality,textile TENG cleanability,sports sensors safety,kinds and manufacturing of sports sensors,and data collection comprehensiveness,and finally,propose the countermeasures.This work has practical significance to the current TENG applications in sports monitoring,and TENG-based sensing technology will have a broad prospect in the field of intelligent sports in the future. 展开更多
关键词 Triboelectric nanogenerator wearable energy sensors Sport monitoring
下载PDF
Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development 被引量:3
17
作者 Arnaldo Leal-Junior Leticia Avellar +3 位作者 Vitorino Biazi M.Simone Soares Anselmo Frizera Carlos Marques 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期1-11,共11页
This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspir... This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology. 展开更多
关键词 optical sensors optical waveguides bioinspired design multifunctional structures wearable sensors
下载PDF
用于高风险环境安全监测和可调热管理的具有分层核壳结构的耐化学品纱线
18
作者 Duo Xu Yingcun Liu +6 位作者 Can Ge Chong Gao Ze Chen Ziyi Su Haoran Gong Weilin Xu Jian Fang 《Engineering》 SCIE EI CAS CSCD 2024年第1期217-225,共9页
Chemical resistant textiles are vital for safeguarding humans against chemical hazards in various settings.such as industrialproduction,chemicalaccidents,laboratory activities,and road transportation.However,the ideal... Chemical resistant textiles are vital for safeguarding humans against chemical hazards in various settings.such as industrialproduction,chemicalaccidents,laboratory activities,and road transportation.However,the ideal integration of chemical resistance,thermal and moisture management,and wearer condition monitoring in conventional chemically protective textiles remains challenging.Herein,the design,manufacturing,and use of stretchable hierarchical core-shell yarns(HCSYs)for integrated chemical resistance,moisture regulation,and smart sensing textiles are demonstrated.These yarns con-tain helically elastic spandex,wrapped silver-plated nylon,and surface-structuredpolytetrafluo-roethylene(PTFE)yarns and are designed and manufactured based on a scalable fabrication process.In addition to their ideal chemical resistance performance,HCSYs can function as multifunctional stretch-able electronics for real-time human motion monitoring and as the basic element of intelligent textiles.Furthermore,a desirable dynamic thermoregulation function is achieved by exploiting the fabric structure with stretching modulation.Our HCSYs may provide prospective opportunities for the future development of smart protective textiles with high durability,flexibility,and scalability. 展开更多
关键词 Hierarchical core-shell structure Chemical resistant yam wearable strain sensor THERMOREGULATION
下载PDF
Flexible wearable sensors:An emerging platform for monitoring of bacterial infection in skin wounds
19
作者 Hao Meng Weicheng Zhong +7 位作者 Kui Ma Jianlong Su Liqian Ma Yaying Hao Yufeng Jiang Xi Liu Xiaobing Fu Cuiping Zhang 《Engineered Regeneration》 EI 2024年第2期186-198,共13页
Persistent inflammatory responses often occur when bacteria and other microorganisms frequently invade and colonize open wounds and eventually result in the formation of chronic wounds.Therefore,achieving real-time de... Persistent inflammatory responses often occur when bacteria and other microorganisms frequently invade and colonize open wounds and eventually result in the formation of chronic wounds.Therefore,achieving real-time detection of invasive bacteria accurately and promptly is essential for efficient wound management and accelerat-ing the healing process.Recently,flexible wearable sensors have garnered significant attention,especially those designed for monitoring real-time biophysical or biochemical signals in wound sites in a minimally invasive manner.They provide more precise and continuous monitoring data,making them as emerging tools for clinical diagnostics.In this review,we first discuss the species and community distribution of different types of bacteria in chronic wounds.Next,we introduce currently developed techniques for detecting bacteria at wound sites.Fol-lowing that,we discuss the recent progress and unresolved issues of various flexible wearable sensors in detecting bacteria at wound sites.We believe that this review can provide meaningful guidance for the development of flexible wearable sensors for bacteria detection. 展开更多
关键词 Flexible wearable sensors Chronic wounds Bacterial infections Real-time detection
原文传递
Real Time Monitoring of Muscle Fatigue with IoT and Wearable Devices
20
作者 Anita Gehlot Rajesh Singh +5 位作者 Sweety Siwach Shaik Vaseem Akram Khalid Alsubhi Aman Singh Irene Delgado Noya Sushabhan Choudhury 《Computers, Materials & Continua》 SCIE EI 2022年第7期999-1015,共17页
Wearable monitoring devices are in demand in recent times for monitoring daily activities including exercise.Moreover,it is widely utilizing for preventing injuries of athletes during a practice session and in few cas... Wearable monitoring devices are in demand in recent times for monitoring daily activities including exercise.Moreover,it is widely utilizing for preventing injuries of athletes during a practice session and in few cases,it leads to muscle fatigue.At present,emerging technology like the internet of things(IoT)and sensors is empowering to monitor and visualize the physical data from any remote location through internet connectivity.In this study,an IoT-enabled wearable device is proposing for monitoring and identifying the muscle fatigue condition using a surface electromyogram(sEMG)sensor.Normally,the EMG signal is utilized to display muscle activity.Arduino controller,Wi-Fi module,and EMG sensor are utilized in developing the wearable device.The Time-frequency domain spectrum technique is employed for classifying the threemuscle fatigue conditions including meanRMS,mean frequency,etc.A real-time experiment is realized on six different individuals with developed wearable devices and the average RMS value assists to determine the average threshold of recorded data.The threshold level is analyzed by calculating the mean RMS value and concluded three fatigue conditions as>2V:Extensive);1–2V:Moderate,and<1V:relaxed.The warning alarm system was designed in LabVIEW with three color LEDs to indicate the different states of muscle fatigue.Moreover,the device is interfaced with the cloud through the internet provided with a Wi-Fi module embedded in wearable devices.The data available in the cloud server can be utilized for forecasting the frequency of an individual to muscle fatigue. 展开更多
关键词 LabVIEW muscle fatigue SEMG wearable sensor IOT cloud server
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部