期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect Factors on Measurement Precision of the Embedded Temperature Sensing Fabric
1
作者 张如全 邓南平 +2 位作者 程博闻 张尚勇 吴英 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期710-718,共9页
The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrin... The embedded temperature sensing fabric was designed and woven according to the heat transmission model of the fabric.The temperature sensors were embedded into the multi-layered fabric that weft yarns were high-shrinkage polyester filaments.And the fabric was treated by a self-designed partial heat device,which can make the sensor be fixed in the fabric.The effects of yarn type,yarn linear density,fabric warp density,fabric structure,fabric layer numbers where the sensor is located,and the ambient temperature on the temperature measured value were investigated.The results demonstrated that when the higher thermal conductivity of yarns and lower density yarns were applied in the fabric as rawmaterials,they were favored to improve the measurement precision.Meanwhile,there were many factors that could make the measured values closer to the real value of the body,such as the plain fabric,the increased warp density of the fabric,the multiple-layer fabric where the sensor was located,the raised ambient testing temperature and the prolonged test time in the certain range. 展开更多
关键词 temperature sensing fabric design of fabric weaving parameter measurement precision of body temperature
下载PDF
Woven fabric triboelectric nanogenerators for human-computer interaction and physical health monitoring
2
作者 Yu Miao Mengjuan Zhou +7 位作者 Jia Yi Yanyan Wang Guangjin Tian Hongxia Zhang Wenlong Huang Wenhao Wang Ronghui Wu Liyun Ma 《Nano Research》 SCIE EI CSCD 2024年第6期5540-5548,共9页
Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in... Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design. 展开更多
关键词 single-yarn triboelectric nanogenerators woven fabric triboelectric nanogenerators fabric weaving structures and parameters human-computer interaction physical health monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部