This study compares websites that take live data into account using search engine optimization(SEO).A series of steps called search engine optimization can help a website rank highly in search engine results.Static we...This study compares websites that take live data into account using search engine optimization(SEO).A series of steps called search engine optimization can help a website rank highly in search engine results.Static websites and dynamic websites are two different types of websites.Static websites must have the necessary expertise in programming compatible with SEO.Whereas in dynamic websites,one can utilize readily available plugins/modules.The fundamental issue of all website holders is the lower level of page rank,congestion,utilization,and exposure of the website on the search engine.Here,the authors have studied the live data of four websites as the real-time data would indicate how the SEO strategy may be applied to website page rank,page difficulty removal,and brand query,etc.It is also necessary to choose relevant keywords on any website.The right keyword might assist to increase the brand query while also lowering the page difficulty both on and off the page.In order to calculate Off-page SEO,On-page SEO,and SEO Difficulty,the authors examined live data in this study and chose four well-known Indian university and institute websites for this study:www.caluniv.ac.in,www.jnu.ac.in,www.iima.ac.in,and www.iitb.ac.in.Using live data and SEO,the authors estimated the Off-page SEO,On-page SEO,and SEO Difficulty.It has been shown that the Off-page SEO of www.caluniv.ac.in is lower than that of www.jnu.ac.in,www.iima.ac.in,and www.iitb.ac.in by 9%,7%,and 7%,respectively.On-page SEO is,in comparison,4%,1%,and 1%more.Every university has continued to keep up its own brand query.Additionally,www.caluniv.ac.in has slightly less SEO Difficulty compared to other websites.The final computed results have been displayed and compared.展开更多
The concept of Webpage visibility is usually linked to search engine optimization (SEO), and it is based on global in-link metric [1]. SEO is the process of designing Webpages to optimize its potential to rank high on...The concept of Webpage visibility is usually linked to search engine optimization (SEO), and it is based on global in-link metric [1]. SEO is the process of designing Webpages to optimize its potential to rank high on search engines, preferably on the first page of the results page. The purpose of this research study is to analyze the influence of local geographical area, in terms of cultural values, and the effect of local society keywords in increasing Website visibility. Websites were analyzed by accessing the source code of their homepages through Google Chrome browser. Statistical analysis methods were selected to assess and analyze the results of the SEO and search engine visibility (SEV). The results obtained suggest that the development of Web indicators to be included should consider a local idea of visibility, and consider a certain geographical context. The geographical region that the researchers are considering in this research is the Hashemite kingdom of Jordan (HKJ). The results obtained also suggest that the use of social culture keywords leads to increase the Website visibility in search engines as well as localizes the search area such as google.jo, which localizes the search for HKJ.展开更多
Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In...Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In this article,a feature selection algorithm with local search strategy based on the forest optimization algorithm,namely FSLSFOA,is proposed.The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest.Next,the fitness function is improved,which not only considers the classification accuracy,but also considers the size of the feature subset.To avoid falling into local optimum,a novel global seeding method is attempted,which selects trees on the bottom of candidate set and gives the algorithm more diversities.Finally,FSLSFOA is compared with four feature selection methods to verify its effectiveness.Most of the results are superior to these comparative methods.展开更多
This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adju...This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.展开更多
COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now u...COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now use search engine optimization to effectively position themselves.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.Kenya’s tourism ministry and state government work hard to improve the business climate for tour and travel companies.Despite the overall positive image,international tourist market growth rates in Kenya have been 3.5 percent slower from 2017 to 2019 compared to previous years.This was further aggregated by the onset of the COVID-19 pandemic in the year 2020,when the growth rate of tours and travel agencies fell by 65%.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.This study adopted a positivist philosophy.Both descriptive and explanatory research designs were used.A self-administered semi-structured questionnaire was used to collect data from 324 registered tours and travels agencies picked from and a sample of 179 were used.Data analysis included the development and interpretation of both descriptive and inferential statistics,such as frequencies,mean,percentages,and standard deviation,and was presented using tables and numerical values.The results of regression analysis established that search engine optimization had a positive and significant effect on market performance of the registered tours and travel agencies picked from a sample of 179.The study recommends that agency management ensure that the firm’s website is easily accessible in order to improve agency performance.Using the internet to gain a large market share can assist tours and travel agencies in improving the performance and income of their websites.展开更多
The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between ...The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.展开更多
Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In ...Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.展开更多
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta...The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.展开更多
Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of S...Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computi...Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous env...In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.展开更多
The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existi...The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%.展开更多
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall...As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.展开更多
Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibrati...Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibration causes instability of fuel supply which brings the risk of power loss of UAV. Considering that the closed-loop control of AFR can ensure a stable fuel feeding, this paper proposes an AFR control based fuel supply strategy in order to improve the efficiency of fuel-powered UAV while obtaining the required engine speed. According to the optimum fuel injection results, we implement fuzzy-PID method to control the set AFR in different situations. Through simulation and experiment studies, the results indicate that, to begin with, the calibrated mathematical model of the aircraft engine is effective. Next, this fuel supply strategy based on AFR control can normally realize the engine speed regulation, and the applied control algorithm can eliminate the overshoot of AFR throughout all the working progress. What is more,the fuel supply strategy can averagely shorten the response time of the engine speed by about two seconds. In addition, compared with the open-loop calibration, in this work the power efficiency is improved by 9% to 33%. Last but not the least, the endurance can be improved by 30 min with a normal engine speed. This paper can be a reference for the optimization of UAV aircraft engine.展开更多
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
文摘This study compares websites that take live data into account using search engine optimization(SEO).A series of steps called search engine optimization can help a website rank highly in search engine results.Static websites and dynamic websites are two different types of websites.Static websites must have the necessary expertise in programming compatible with SEO.Whereas in dynamic websites,one can utilize readily available plugins/modules.The fundamental issue of all website holders is the lower level of page rank,congestion,utilization,and exposure of the website on the search engine.Here,the authors have studied the live data of four websites as the real-time data would indicate how the SEO strategy may be applied to website page rank,page difficulty removal,and brand query,etc.It is also necessary to choose relevant keywords on any website.The right keyword might assist to increase the brand query while also lowering the page difficulty both on and off the page.In order to calculate Off-page SEO,On-page SEO,and SEO Difficulty,the authors examined live data in this study and chose four well-known Indian university and institute websites for this study:www.caluniv.ac.in,www.jnu.ac.in,www.iima.ac.in,and www.iitb.ac.in.Using live data and SEO,the authors estimated the Off-page SEO,On-page SEO,and SEO Difficulty.It has been shown that the Off-page SEO of www.caluniv.ac.in is lower than that of www.jnu.ac.in,www.iima.ac.in,and www.iitb.ac.in by 9%,7%,and 7%,respectively.On-page SEO is,in comparison,4%,1%,and 1%more.Every university has continued to keep up its own brand query.Additionally,www.caluniv.ac.in has slightly less SEO Difficulty compared to other websites.The final computed results have been displayed and compared.
文摘The concept of Webpage visibility is usually linked to search engine optimization (SEO), and it is based on global in-link metric [1]. SEO is the process of designing Webpages to optimize its potential to rank high on search engines, preferably on the first page of the results page. The purpose of this research study is to analyze the influence of local geographical area, in terms of cultural values, and the effect of local society keywords in increasing Website visibility. Websites were analyzed by accessing the source code of their homepages through Google Chrome browser. Statistical analysis methods were selected to assess and analyze the results of the SEO and search engine visibility (SEV). The results obtained suggest that the development of Web indicators to be included should consider a local idea of visibility, and consider a certain geographical context. The geographical region that the researchers are considering in this research is the Hashemite kingdom of Jordan (HKJ). The results obtained also suggest that the use of social culture keywords leads to increase the Website visibility in search engines as well as localizes the search area such as google.jo, which localizes the search for HKJ.
基金National Science Foundation of China(Nos.U1736105,61572259,41942017)The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no.RGP-VPP-264.
文摘Feature selection has been widely used in data mining and machine learning.Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly.In this article,a feature selection algorithm with local search strategy based on the forest optimization algorithm,namely FSLSFOA,is proposed.The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest.Next,the fitness function is improved,which not only considers the classification accuracy,but also considers the size of the feature subset.To avoid falling into local optimum,a novel global seeding method is attempted,which selects trees on the bottom of candidate set and gives the algorithm more diversities.Finally,FSLSFOA is compared with four feature selection methods to verify its effectiveness.Most of the results are superior to these comparative methods.
基金partially supported by the Fundamental Research Funds for the Central Universities(WUT:2022IVA067)the National Natural Science Foundation of China(Grant No.:72172112)the Fundamental Research Funds for the Central Universities(HUST:2019kfyRCPY038).
文摘This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.
文摘COVID-19 is a devastating pandemic with widespread negative health,social,and economic consequences.Due to drastic changes in the business environment of tour and travel agencies,firms and marketing managers can now use search engine optimization to effectively position themselves.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.Kenya’s tourism ministry and state government work hard to improve the business climate for tour and travel companies.Despite the overall positive image,international tourist market growth rates in Kenya have been 3.5 percent slower from 2017 to 2019 compared to previous years.This was further aggregated by the onset of the COVID-19 pandemic in the year 2020,when the growth rate of tours and travel agencies fell by 65%.The study’s main goal is to evaluate the effect of search engine optimization on the market performance of registered tours and travel agencies in Nairobi County,Kenya.This study adopted a positivist philosophy.Both descriptive and explanatory research designs were used.A self-administered semi-structured questionnaire was used to collect data from 324 registered tours and travels agencies picked from and a sample of 179 were used.Data analysis included the development and interpretation of both descriptive and inferential statistics,such as frequencies,mean,percentages,and standard deviation,and was presented using tables and numerical values.The results of regression analysis established that search engine optimization had a positive and significant effect on market performance of the registered tours and travel agencies picked from a sample of 179.The study recommends that agency management ensure that the firm’s website is easily accessible in order to improve agency performance.Using the internet to gain a large market share can assist tours and travel agencies in improving the performance and income of their websites.
基金Project supported by the National Natural Science Foundation of China (Nos.62022015 and 62088101)the Shanghai Municipal Science and Technology Major Project,China(No.2021SHZDZX0100)the Shanghai Municipal Commission of Science and Technology Project,China (No.19511132101)。
文摘The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.
基金supported by Commission of Science Technology and Industry for National Defence of China under Grant No.A1420061264National Natural Science Foundation of China under Grant No.60934002General Armament Department under Grand No.51317040102)
文摘Test points selection for integer-coded fault wise table is a discrete optimization problem. The global minimum set of test points can only be guaranteed by an exhaustive search which is eompurationally expensive. In this paper, this problem is formulated as a heuristic depth-first graph search problem at first. The graph node expanding method and rules are given. Then, rollout strategies are applied, which can be combined with the heuristic graph search algorithms, in a computationally more efficient manner than the optimal strategies, to obtain solutions superior to those using the greedy heuristic algorithms. The proposed rollout-based test points selection algorithm is illustrated and tested using an analog circuit and a set of simulated integer-coded fault wise tables. Computa- tional results are shown, which suggest that the rollout strategy policies are significantly better than other strategies.
基金Project of Key Science and Technology of the Henan Province (No.202102310259)Henan Province University Scientific and Technological Innovation Team (No.18IRTSTHN009).
文摘The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.
文摘Based on the analysis of characteristics and advantages of HSO(harmony search optimization) algorithm, HSO was used in reservoir engineering assisted history matching of Kareem reservoir in Amal field in the Gulf of Suez, Egypt. HSO algorithm has the following advantages:(1) The good balance between exploration and exploitation techniques during searching for optimal solutions makes the HSO algorithm robust and efficient.(2) The diversity of generated solutions is more effectively controlled by two components, making it suitable for highly non-linear problems in reservoir engineering history matching.(3) The integration between the three components(harmony memory values, pitch adjusting and randomization) of the HSO helps in finding unbiased solutions.(4) The implementation process of the HSO algorithm is much easier. The HSO algorithm and two other commonly used algorithms(genetic and particle swarm optimization algorithms) were used in three reservoir engineering history match questions of different complex degrees, which are two material balance history matches of different scales and one reservoir history matching. The results were compared, which proves the superiority and validity of HSO. The results of Kareem reservoir history matching show that using the HSO algorithm as the optimization method in the assisted history matching workflow improves the simulation quality and saves solution time significantly.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
文摘Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
基金supported in part by the National Natural Science Foundation of China under Grant 51979275the National Key Research and Development Program of China under Grant 2022YFD2001405+8 种基金the open fund of Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province under Grant 2023ZJZD2306the Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,Ministry of Natural Resources,under Grant KFKT-2022-05in part by Shenzhen Science and Technology Program(grant number ZDSYS20210623091808026)the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,under Grant VRLAB2022C10in part by the open fund project of State Key Laboratory of Clean Energy Utilization under Grant ZJUCEU2022002the open fund of Key Laboratory of Smart Agricultural Technology(Yangtze River Delta),Ministry of Agriculture and Rural Affairs,under Grant KSAT-YRD2023005the Open Project Program of Key Laboratory of Smart Agricultural Technology in Tropical South China,Ministry of Agriculture and Rural Affairs,under Grant HNZHNYKFKT-202202the Higher Education Scientific Research Planning Project,China Association of Higher Education,under Grant 23XXK0304the 2115 Talent Development Program of China Agricultural University.Ben Ma received the master's degree in mechatronics engineering at the College of Engineering,China Agricultural University,Beijing,China,in 2021.
文摘In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model.
基金Supported by the National Natural Science Foundation of China (No. 90818007)
文摘The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%.
基金supported by the National Natural Science Foundation of China(No.72071202)the Key Laboratory of Mathematics and Engineering Applications,Ministry of Education。
文摘As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.
基金financially supported by the National Natural Science Foundation of China (No. 51605013)the Pneumatic and Thermodynamic Energy Storage and Supply Beijing Key Laboratory
文摘Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibration causes instability of fuel supply which brings the risk of power loss of UAV. Considering that the closed-loop control of AFR can ensure a stable fuel feeding, this paper proposes an AFR control based fuel supply strategy in order to improve the efficiency of fuel-powered UAV while obtaining the required engine speed. According to the optimum fuel injection results, we implement fuzzy-PID method to control the set AFR in different situations. Through simulation and experiment studies, the results indicate that, to begin with, the calibrated mathematical model of the aircraft engine is effective. Next, this fuel supply strategy based on AFR control can normally realize the engine speed regulation, and the applied control algorithm can eliminate the overshoot of AFR throughout all the working progress. What is more,the fuel supply strategy can averagely shorten the response time of the engine speed by about two seconds. In addition, compared with the open-loop calibration, in this work the power efficiency is improved by 9% to 33%. Last but not the least, the endurance can be improved by 30 min with a normal engine speed. This paper can be a reference for the optimization of UAV aircraft engine.
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.