结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广...结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广东省的强台风/超强台风灾情进行识别,在粗分类获取台风灾情相关微博文本的基础上,进一步细分类为交通影响、社会影响、电力影响、林业影响和内涝积水等5类灾情。结果表明:1)提出的台风灾情识别方法粗分类和细分类精度分别达到0.907和0.814;2)强台风/超强台风的灾情占比受台风强度、路径和受灾地区发展水平等因素影响而存在差异;3)台风登陆前,灾情主要为台风预防措施导致的交通影响和社会影响。台风登陆后,灾情表现出单峰和双峰特征,反映台风灾情的变化趋势和特点。展开更多
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ...Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.展开更多
BACKGROUND The risks associated with negative doctor-patient relationships have seriously hindered the healthy development of medical and healthcare and aroused wide-spread concern in society.The number of public comm...BACKGROUND The risks associated with negative doctor-patient relationships have seriously hindered the healthy development of medical and healthcare and aroused wide-spread concern in society.The number of public comments on doctor-patient relationship risk events reflects the degree to which the public pays attention to such events.Thirty incidents of doctor-patient disputes were collected from Weibo and TikTok,and 3655 related comments were extracted.The number of comment sentiment words was extracted,and the comment sentiment value was calculated.The Kruskal-Wallis H test was used to compare differences between each variable group at different levels of incidence.Spearman’s correlation analysis was used to examine associations between variables.Regression analysis was used to explore factors influencing scores of comments on incidents.RESULTS The study results showed that public comments on media reports of doctor-patient disputes at all levels are mainly dominated by“good”and“disgust”emotional states.There was a significant difference in the comment scores and the number of partial emotion words between comments on varying levels of severity of doctor-patient disputes.The comment score was positively correlated with the number of emotion words related to positive,good,and happy)and negatively correlated with the number of emotion words related to negative,anger,disgust,fear,and sadness.CONCLUSION The number of emotion words related to negative,anger,disgust,fear,and sadness directly influences comment scores,and the severity of the incident level indirectly influences comment scores.展开更多
文摘结合台风属性数据和多标签分类方法,以BERT-BiLSTM(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory)为分类模型,提出基于微博文本与深度学习的台风灾情识别方法,对2010—2019年登陆广东省的强台风/超强台风灾情进行识别,在粗分类获取台风灾情相关微博文本的基础上,进一步细分类为交通影响、社会影响、电力影响、林业影响和内涝积水等5类灾情。结果表明:1)提出的台风灾情识别方法粗分类和细分类精度分别达到0.907和0.814;2)强台风/超强台风的灾情占比受台风强度、路径和受灾地区发展水平等因素影响而存在差异;3)台风登陆前,灾情主要为台风预防措施导致的交通影响和社会影响。台风登陆后,灾情表现出单峰和双峰特征,反映台风灾情的变化趋势和特点。
基金funded by Outstanding Youth Team Project of Central Universities(QNTD202308).
文摘Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.
基金Supported by the National Natural Science Foundation of China,No.72374005Natural Science Foundation for the Higher Education Institutions of Anhui Province of China,No.2023AH050561Cultivation Programme for Young and Middle-aged Excellent Teachers in Anhui Province,No.YQZD2023021.
文摘BACKGROUND The risks associated with negative doctor-patient relationships have seriously hindered the healthy development of medical and healthcare and aroused wide-spread concern in society.The number of public comments on doctor-patient relationship risk events reflects the degree to which the public pays attention to such events.Thirty incidents of doctor-patient disputes were collected from Weibo and TikTok,and 3655 related comments were extracted.The number of comment sentiment words was extracted,and the comment sentiment value was calculated.The Kruskal-Wallis H test was used to compare differences between each variable group at different levels of incidence.Spearman’s correlation analysis was used to examine associations between variables.Regression analysis was used to explore factors influencing scores of comments on incidents.RESULTS The study results showed that public comments on media reports of doctor-patient disputes at all levels are mainly dominated by“good”and“disgust”emotional states.There was a significant difference in the comment scores and the number of partial emotion words between comments on varying levels of severity of doctor-patient disputes.The comment score was positively correlated with the number of emotion words related to positive,good,and happy)and negatively correlated with the number of emotion words related to negative,anger,disgust,fear,and sadness.CONCLUSION The number of emotion words related to negative,anger,disgust,fear,and sadness directly influences comment scores,and the severity of the incident level indirectly influences comment scores.