In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of v...In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.展开更多
In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by ...In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.展开更多
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of ...The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of computer controlling system comprises pressure sensors, displacement sensors, data acquisitions, RS 485 network and the computer controlling model; the part of loading system is composed of the fulcrum structure and the concrete girder. The measurement principle and composition of the weighing system are discussed in this paper. Credibility and security of the weighing system are fully considered during the design phase. The hydraulic system is controlled by pilot operated check valves in case of the sudden loss of system pressure. The states of all gauges and RS485 network are monitored by computer controlling system functioning in different modules. When the system is running incorrectly, it will be switched to manual mode and give alarm. The finite element method is employed to analyze fulcrum structure so that the system has enough intensity to be lifted. Hence the reliability of the whole system is enhanced.展开更多
Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpi...Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpine mountains and at high latitude areas.The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation.To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains,we established a cryospheric hydrometeorology observation(CHOICE)system in 2008 in the Qilian Mountains,which consists of six automated observation stations located between 2960 and 4800 m a.s.l.Total Rain weighing Sensor(TRwS)gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment(WMO-SPICE)were used at observation stations with the CHOICE system.To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges,we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system.Moreover,we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station.The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system.Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters.The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions.Thus,root-mean-square error(RMSE)of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135(353%)and 0.072 mm(111%),respectively.RMSE values of liquid,solid and mixed precipitation measurements corrected by the new parameters decreased by 6%,20% and 13%,respectively.In addition,the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system.The relative precipitation(RP)increment of different types of precipitation increased with rising altitude.The average RP increment value of snowfall at six stations was the highest,reaching 7%,while that of rainfall was the lowest,covering 3%.Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.展开更多
In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are p...In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are pressure fluctuations of storage tank and puffing tank. According to the interaction of pressures, a neural network based method combined with fuzzy logic is adopted to enhance the precision. Experimental results show this method is satisfactory.展开更多
A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With g...A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With generalized blow up method, some results are obtained for asymptotic behavior of positive solutions. This problem includes Laplacian operators as special cases.展开更多
In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fus...In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fusion and then use all the idle channels decided by the coordinator. The local sensing time of CR is divided into multi-slots in which CR can sense any sub-channel. Through reasonably allocating the sensing slots and users by mathematic optimization, the proposed algorithm can improve the total throughput of CR. The optimization problem of the proposed scheme which seeks to maximize the throughput subject to the constraint of the detected performance of each sub-channel is proposed in order to choose the optimum local sense time and the number of the cooperative CRs. The simulation results indicate that the proposed scheme can obtain higher throughput than the conventional single-channel sense, and there are the optimum local sense time and the number of cooperative CRs to make the throughput reach maximum.展开更多
Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balan...Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balanced incomplete block designs. Also the conditions under which the constructed chemical balance weighing designs become A-optimal are also been given.展开更多
In this weigh-in-motion(WIM)research,a novel fiber Bragg grating(FBG)-based weigh-in-motion(WIM)system was introduced.The design derived from the idea using in-service bridge abutments as the weigh scale.The bridge be...In this weigh-in-motion(WIM)research,a novel fiber Bragg grating(FBG)-based weigh-in-motion(WIM)system was introduced.The design derived from the idea using in-service bridge abutments as the weigh scale.The bridge beam was replaced by a piece of steel plate which supports the weight of the traveling vehicle.All weights would be finally transferred into the tubes where four FBGs were attached and could record the weight-induced strains by shifting their Bragg wavelengths.The system identification algorithm based on parameters estimation was initiated.Over 40-ton load had been applied on the system and the experimental results showed a good repeatability and linearity.The system resolution had been achieved as low as 10 kg.Compared with other designs of fiber-optic WIM systems,this design is easy and reliable.展开更多
Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs ...Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs are also obtained.展开更多
Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation pri...Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.展开更多
This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and i...This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.展开更多
Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight...Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively.展开更多
基金granted by RDSF funding,project“Fibre Optic Sensor Applications for Automatic Measurement of the Weight of Vehicles in Motion:Research and Development(2010-2012)”,No.2010/0280/2DP/2.1.1.1.0/10/APIA/VIAA/094,19.12.2010.
文摘In this work,the possibility of adaptive algorithm in WIM(weight-in-motion)systems,in which fibre optic sensors are used,is shown.Appointment of dynamic weighing device consists in determining the weight and type of vehicle.In this work an algorithm for processing the input data and fiber optic sensor to create the database used in the algorithm is presented.The results of the algorithm for the identification of vehicles are given.The conclusions are made and options of increasing the accuracy of the identification algorithm are considered.
文摘In our study, entropy weight coefficients, based on Shannon entropy, were determined for an attribute recognition model to model the quality of groundwater sources. The model follows the theory previously proposed by Chen Q S. In the model, firstly, the author establishes the attribute space matrix and determines the weight based on Shannon entropy theory; secondly, calculates attribute measure; thirdly, evaluates that with confidence criterion and score criterion; finally, an application example is given. The results show that the water quality of the groundwater sources for the city comes up to the grade II or III standard. There is no pollution that obviously exceeds the standard and the water can meet people’s needs .The results from an evaluation of this model are in basic agreement with the observed situation and with a set pair analysis (SPA) model.
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
文摘The weighing system designed for large structure object is mainly composed of three parts. The part of hydraulic system is made up of hydraulic cylinders, high pressure hydraulic hoses and electric pumps; the part of computer controlling system comprises pressure sensors, displacement sensors, data acquisitions, RS 485 network and the computer controlling model; the part of loading system is composed of the fulcrum structure and the concrete girder. The measurement principle and composition of the weighing system are discussed in this paper. Credibility and security of the weighing system are fully considered during the design phase. The hydraulic system is controlled by pilot operated check valves in case of the sudden loss of system pressure. The states of all gauges and RS485 network are monitored by computer controlling system functioning in different modules. When the system is running incorrectly, it will be switched to manual mode and give alarm. The finite element method is employed to analyze fulcrum structure so that the system has enough intensity to be lifted. Hence the reliability of the whole system is enhanced.
基金funded by the National Natural Sciences Foundation of China(42171145,41690141,41971041,42101120)the Joint Research Project of Three-River Headwaters National Park,Chinese Academy of Sciences and Qinghai Province,China(LHZX-2020-11).
文摘Precipitation is one of the most important indicators of climate data,but there are many errors in precipitation measurements due to the influence of climatic conditions,especially those of solid precipitation in alpine mountains and at high latitude areas.The measured amount of precipitation in those areas is frequently less than the actual amount of precipitation.To understand the impact of climatic conditions on precipitation measurements in the mountainous areas of Northwest China and the applicability of different gauges in alpine mountains,we established a cryospheric hydrometeorology observation(CHOICE)system in 2008 in the Qilian Mountains,which consists of six automated observation stations located between 2960 and 4800 m a.s.l.Total Rain weighing Sensor(TRwS)gauges tested in the World Meteorological Organization-Solid Precipitation Intercomparison Experiment(WMO-SPICE)were used at observation stations with the CHOICE system.To study the influence of climatic conditions on different types of precipitation measured by the TRwS gauges,we conducted an intercomparison experiment of precipitation at Hulu-1 station that was one of the stations in the CHOICE system.Moreover,we tested the application of transfer functions recommended by the WMO-SPICE at this station using the measurement data from a TRwS gauge from August 2016 to December 2020 and computed new coefficients for the same transfer functions that were more appropriate for the dataset from Hulu-1 station.The new coefficients were used to correct the precipitation measurements of other stations in the CHOICE system.Results showed that the new parameters fitted to the local dataset had better correction results than the original parameters.The environmental conditions of Hulu-1 station were very different from those of observation stations that provided datasets to create the transfer functions.Thus,root-mean-square error(RMSE)of solid and mixed precipitation corrected by the original parameters increased significantly by the averages of 0.135(353%)and 0.072 mm(111%),respectively.RMSE values of liquid,solid and mixed precipitation measurements corrected by the new parameters decreased by 6%,20% and 13%,respectively.In addition,the new parameters were suitable for correcting precipitation at other five stations in the CHOICE system.The relative precipitation(RP)increment of different types of precipitation increased with rising altitude.The average RP increment value of snowfall at six stations was the highest,reaching 7%,while that of rainfall was the lowest,covering 3%.Our results confirmed that the new parameters could be used to correct precipitation measurements of the CHOICE system.
文摘In the injection of pulverized coal into a blast furnace, there are some factors which affect the readout of electronic weighing system. Through analyzing the measuring errors, it is found that the main reasons are pressure fluctuations of storage tank and puffing tank. According to the interaction of pressures, a neural network based method combined with fuzzy logic is adopted to enhance the precision. Experimental results show this method is satisfactory.
文摘A general weighted second order elliptic equation involving critical growth is considered on bounded smooth. domain in n-dimension space. There is the singular point for the weighted coefficients in the domain. With generalized blow up method, some results are obtained for asymptotic behavior of positive solutions. This problem includes Laplacian operators as special cases.
基金Sponored by the National Natural Science Foundation of China ( Grant No. 61071104)the Fundamental Research Funds for the Central Universities( Grant No. HIT. NSRIF. 201149)
文摘In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fusion and then use all the idle channels decided by the coordinator. The local sensing time of CR is divided into multi-slots in which CR can sense any sub-channel. Through reasonably allocating the sensing slots and users by mathematic optimization, the proposed algorithm can improve the total throughput of CR. The optimization problem of the proposed scheme which seeks to maximize the throughput subject to the constraint of the detected performance of each sub-channel is proposed in order to choose the optimum local sense time and the number of the cooperative CRs. The simulation results indicate that the proposed scheme can obtain higher throughput than the conventional single-channel sense, and there are the optimum local sense time and the number of cooperative CRs to make the throughput reach maximum.
文摘Some new construction methods of the optimum chemical balance weighing designs and pairwise efficiency and variance balanced designs are proposed, which are based on the incidence matrices of the known symmetric balanced incomplete block designs. Also the conditions under which the constructed chemical balance weighing designs become A-optimal are also been given.
文摘In this weigh-in-motion(WIM)research,a novel fiber Bragg grating(FBG)-based weigh-in-motion(WIM)system was introduced.The design derived from the idea using in-service bridge abutments as the weigh scale.The bridge beam was replaced by a piece of steel plate which supports the weight of the traveling vehicle.All weights would be finally transferred into the tubes where four FBGs were attached and could record the weight-induced strains by shifting their Bragg wavelengths.The system identification algorithm based on parameters estimation was initiated.Over 40-ton load had been applied on the system and the experimental results showed a good repeatability and linearity.The system resolution had been achieved as low as 10 kg.Compared with other designs of fiber-optic WIM systems,this design is easy and reliable.
文摘Methods of constructing the optimum chemical balance weighing designs from symmetric balanced incomplete block designs are proposed with illustration. As a by-product pairwise efficiency and variance balanced designs are also obtained.
文摘Sample preparation by fusion for XRF analysis is all about knowing the exact weights of the sample and the flux (sample-to-flux ratio). The whole analytical chain, including the weighing step in sample preparation prior to fusion, is of crucial importance to get precise and accurate x-ray fluorescence (XRF) results. Consequently, the weighing method will affect the quality of the analytical results given by the spectrometer. In this study, the effects of different weighing methods on the precision (RSD) of the obtained XRF results are compared to determine the best weighing method for sample preparation by fusion in terms of comparable precisions in the XRF results.
文摘This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.035115003).Acknowledgment The authors would like to thank Shanghai Yamato Scale Co., Ltd. for providing the experiment site and truck.
文摘Dynanfic forces are the main factor that influences the axle weight measurement accuracy of moving vehicle. Empirical mode decomposition (EMD) is presented to separate the dynamic forces contained in the axle weight signal. The concept and algorithm of EMD are introduced. The characteristic of the axle weight signal is analyzed. The method of judging pseudo intrinsic mode function (pseudo-IMF) is presented to improve the weighing accuracy. Numerical simulation and field experiments are conducted to evaluate the performance of EMD. The result shows effectiveness of the proposed method. Maximum weighing errors of the front axle, the rear axle and the gross weight at the speed of 15 km/h or lower are 2.22%, 6.26% and 4.11% respectively.