In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
In this paper,we establish the new forms of Riemann-type fractional integral and derivative operators.The novel fractional integral operator is proved to be bounded in Lebesgue space and some classical fractional inte...In this paper,we establish the new forms of Riemann-type fractional integral and derivative operators.The novel fractional integral operator is proved to be bounded in Lebesgue space and some classical fractional integral and differential operators are obtained as special cases.The properties of new operators like semi-group,inverse and certain others are discussed and its weighted Laplace transform is evaluated.Fractional integro-differential freeelectron laser(FEL)and kinetic equations are established.The solutions to these new equations are obtained by using the modified weighted Laplace transform.The Cauchy problem and a growth model are designed as applications along with graphical representation.Finally,the conclusion section indicates future directions to the readers.展开更多
Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the compa...The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.展开更多
Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA o...Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.展开更多
Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA...Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.展开更多
We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the op...We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and th...Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.展开更多
We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to ...This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.展开更多
We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bl...We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.展开更多
In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a...In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.展开更多
In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized,...In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized, and the spectra of compact and invertible weighted composition operators are also described.展开更多
Based on a new characterization of bounded and compact weighted compositionoperators on the Fock space obtained by Le T (Le T. Normal and isometricweighted composition operators on the Fock space. Bull. London. Math....Based on a new characterization of bounded and compact weighted compositionoperators on the Fock space obtained by Le T (Le T. Normal and isometricweighted composition operators on the Fock space. Bull. London. Math. Soc., 2014,46: 847-856), this paper shows that a bounded weighted composition operator onthe Fock space is a Fredholm operator if and only if it is an invertible operator, andif and only if it is a nonzero constant multiple of a unitary operator. The result isvery different from the corresponding results on the Hardy space and the Bergmanspace.展开更多
The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted ...The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted composition operator.展开更多
In this paper, we give a necessary and sufficient condition for weighted composition operators Cu,φ to be boundedness on Bloch type spaces B^α. The theorem generalizes some previous results.
Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss ...Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss the duality spaces of Fock-Sobolev spaces Fs^p,mwhen 0 〈 p 〈∞.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
文摘In this paper,we establish the new forms of Riemann-type fractional integral and derivative operators.The novel fractional integral operator is proved to be bounded in Lebesgue space and some classical fractional integral and differential operators are obtained as special cases.The properties of new operators like semi-group,inverse and certain others are discussed and its weighted Laplace transform is evaluated.Fractional integro-differential freeelectron laser(FEL)and kinetic equations are established.The solutions to these new equations are obtained by using the modified weighted Laplace transform.The Cauchy problem and a growth model are designed as applications along with graphical representation.Finally,the conclusion section indicates future directions to the readers.
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
基金The Technological Innovation Foundation of NanjingForestry University(No.163060033).
文摘The ordered weighted geometric averaging(OWGA) operator is extended to accommodate uncertain conditions where all input arguments take the forms of interval numbers. First, a possibility degree formula for the comparison between interval numbers is introduced. It is proved that the introduced formula is equivalent to the existing formulae, and also some desired properties of the possibility degree is presented. Secondly, the uncertain OWGA operator is investigated in which the associated weighting parameters cannot be specified, but value ranges can be obtained and the associated aggregated values of an uncertain OWGA operator are known. A linear objective-programming model is established; by solving this model, the associated weights vector of an uncertain OWGA operator can be determined, and also the estimated aggregated values of the alternatives can be obtained. Then the alternatives can be ranked by the comparison of the estimated aggregated values using the possibility degree formula. Finally, a numerical example is given to show the feasibility and effectiveness of the developed method.
文摘Based on the properties of ordered weighted averaging (OWA) operator and regular increasing monotone (RIM) quantifier, three methods for generating monotonic OWA operator weights are proposed. They are geometric OWA operator weights, equidifferent OWA operator weights and the modified RIM quantifier OWA weights. Compared with most of the common OWA methods for generating weights, the methods proposed in this paper are more intuitive and efficient in computation. And as there are more than one solution in most cases, the decision maker can set some initial condition and chooses the appropriate solution in the real decision process, which increases the flexibility of decision making to some extent. All these three OWA methods for generating weights are illustrated by numerical examples.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘Based on the quantifier guided method,an ordered weighted averaging(OWA)weights generating method under given orness level with regular increasing monotone(RIM)quantifiers is proposed.Then the RIM quantifier based OWA weights generating method is modified to make the generated weights be monotonic,which can be used to express the decision maker's consistent preference information.Finally,both of these weights generating methods are extended to their generic forms,so that they can generate the OWA weights for any ordinary elements set with any given aggregated value.
基金Supported in part by 973 plan and NSF of Zhejiang Province of China(Gl999075105)
文摘We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金supported by the National Natural Science Foundation of China (70871117 70571086)
文摘Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
基金Supported by the National Natural Science Foundation of China (10771064)the Natural Science Foundation of Zhejiang province (Y6090036+1 种基金Y7080197,Y606197)the Foundation of Department of Education of Zhejiang Province (20070482)
文摘This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.
基金supported by SQU Grant No.IG/SCI/DOMS/16/12The second author was partially supported by NSFC(11720101003)the Project of International Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province(2014KGJHZ007)
文摘We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.
文摘In the present paper, we establish direct and converse theorems for weight-ed Bernstein-Durrmeyer operators under weighted L^p-norm with Jacobi weight w(x)=x^a(1-x)β.All the results involved have no restriction a,β〈1-1/p,which indicates that the weighted Bemstein-Durrmeyer operators have some better approxi- mation properties than the usual Bernstein-Durrmeyer operators.
基金partially supported by NSFC(11771340,11701434,11431011,11471251,11771441)
文摘In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized, and the spectra of compact and invertible weighted composition operators are also described.
文摘Based on a new characterization of bounded and compact weighted compositionoperators on the Fock space obtained by Le T (Le T. Normal and isometricweighted composition operators on the Fock space. Bull. London. Math. Soc., 2014,46: 847-856), this paper shows that a bounded weighted composition operator onthe Fock space is a Fredholm operator if and only if it is an invertible operator, andif and only if it is a nonzero constant multiple of a unitary operator. The result isvery different from the corresponding results on the Hardy space and the Bergmanspace.
基金the National Natural Science Foundation of China(10471039)the Natural Science Foundation of Zhejiang Province(Y606197)the Natural Science Foundation of Huzhou City(2005YZ02)
文摘The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H^∞, but also gives some estimates for the norm of the weighted composition operator.
基金the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2005E06)
文摘In this paper, we give a necessary and sufficient condition for weighted composition operators Cu,φ to be boundedness on Bloch type spaces B^α. The theorem generalizes some previous results.
基金The NSF(11501136,11271092)of Chinathe Key Discipline Construction Project of Subject Groups Focus on Mathematics+1 种基金Information Science in the Construction Project(4601-2015)of the High-level University of Guangdong Provincethe Project(HL02-1517)for the New Talent of Guangzhou University
文摘Abstract: We characterize the boundedness and compactness of weighted compo-sition operators among some Fock-Sobolev spaces. We also estimate the norm and essential norm of these operators. Furthermore, we discuss the duality spaces of Fock-Sobolev spaces Fs^p,mwhen 0 〈 p 〈∞.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.