It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usuall...The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.展开更多
The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentl...The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentle from 30'to 1°30'in general.The main oil-bearing sequences can be divided into 6 sand groups and 34 layers in detail.in which the Ng°-Ng°sand groups are the main payzones in which oil in place accounts for 97.2%of the total.展开更多
The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence ...The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water.展开更多
In order to recognize the distribution of dispersed remaining oil,reservoirs should be described in more detail and quantitatively to establish refined and sophisticated 3D quantified reservoir model which can reflect...In order to recognize the distribution of dispersed remaining oil,reservoirs should be described in more detail and quantitatively to establish refined and sophisticated 3D quantified reservoir model which can reflect the detailed variation in the reservoir and its structure.The key point of sophistication and quantification of reservoir characterization is to describe the geo-metry of interwell sandbodies and to estimate their reservoir parameters.展开更多
As stated above,the ultimate recovery of conventional oil in our country is estimated to be 33.6%,i.e,about 66.4%of the oil reserves cannot be recovered by water injection and may only be targeted for tertiary oil rec...As stated above,the ultimate recovery of conventional oil in our country is estimated to be 33.6%,i.e,about 66.4%of the oil reserves cannot be recovered by water injection and may only be targeted for tertiary oil recovery or for other ty pes.of new technologics.A screening of 82 major oifields developed by water injection and an analysis of their potential showed that application of tertiary recovery technique such as polymer flooding,surfactant flooding and gas miseible flooding will inerease the oil recovery by 12.4%.The total recoverable reserve increment cor-responds to 56%of the current remaining recover-able reserves.This means that the recoverable r'eserves in OUr country can increase by more than one half by a fully tapping of the potential.Therefore,the development of tertiary recovery technology will be an important strategic measure in China's petroleum industry.展开更多
The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined spa...The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).展开更多
According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with...According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with exception of water cone,but a complicated oil-water mixed zone.The oil,satura-tion in the fracture system varied greatly.The large fractures with width of over 100μm were al-most water flushed,the middle fractures between 50-100μm were water encroachment zone and the small fractures less than 50μm were still in a good oil-bearing condition.展开更多
The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fl...The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fluidic Displays switching behavior. A purple oil was formulated by the oil-soluble purple dye in decane in this study. The dye molecule itself is nonpolar and it doesn’t dissolve in water. The concentration of colored oil influenced the oil/water interfacial tension and oil viscosity. The relationship of EFD switching behavior with oil/water interfacial tension, oil viscosity, and oil conductivity has been systematically investigated. The oil/water interfacial tension decreased with increasing oil concentration, in the meanwhile, the conductivity increased. Oil conductivity was one of the key factors that influenced the Electro-Fluidic Displays optical property. We found for the first time that at the lower oil concentration (2% - 10%), the interfacial tension plays a main role effect on the rupture voltage and response time, but as the conductivity of higher concentration of colored oil increased (at 20%), the rupture voltage-controlled both by conductivity and interfacial tension.展开更多
In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polyme...In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins, the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed. The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio, the more gaseous hydrocarbons were obtained. Moreover, a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established. These results are validated by corresponding experiments. The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.展开更多
The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this ...The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this type of well pattern, determining the horizontal well is affected by which injection wells, especially when the injecting water breaks through, accurately determining the direction of water inflow will provide an important basis for targeted water well measures. Based on the production performance data of horizontal wells, the semi logarithmic relationship curves of water-oil ratio, derivative water-oil ratio, and cumulative production were used for the first time to determine the breakthrough problem of water injection in the surrounding water injection wells of horizontal wells based on their response characteristics. The adaptability of this method under different influencing factors was analyzed. Introducing the parameter of cumulative production not only preserves the variation trend of the derivative of water-oil ratio with time, but also facilitates the processing of actual production data.展开更多
This paper presents a new method of injection-production allocation estimation for water-flooding mature oilfields.The suggested approach is based on logistic growth rate functions and several type-curve matching meth...This paper presents a new method of injection-production allocation estimation for water-flooding mature oilfields.The suggested approach is based on logistic growth rate functions and several type-curve matching methods.Using the relationship between these equations,oil production and water injection rate as well as injection-production ratio can be easily forecasted.The calculation procedure developed and outlined in this paper requires very few production data and is easily implemented.Furthermore,an oilfield case has been analyzed.The synthetic and field cases validate the calculation procedure,so it can be accurately used in forecasting production data,and it is important to optimize the whole injection-production system.展开更多
Aphid establishes colony in the selective plant parts like vine, leaf petiole, leaflet, inflorescence, and tender fruit in Dolichos lablab Linn but not the entire plant. In this study, the aphid colony establishment i...Aphid establishes colony in the selective plant parts like vine, leaf petiole, leaflet, inflorescence, and tender fruit in Dolichos lablab Linn but not the entire plant. In this study, the aphid colony establishment in vine is focused to understand the differential resistance response between two varieties. At the early stage of aphid infestation, the aphid colony establishment was significantly different between two genotypes (p value = 0.00) and abbreviated as “resistant” variety that supported lower aphid proliferation (mean value = 48.2 ± 2.2) and “susceptible” variety that supported comparatively higher aphid proliferation (mean value = 215.5 ± 16.9). The total aphid number was significantly different between the two varieties, realized at the early infestation stage when both “antixenosis” and “antibiosis” defense mechanisms were working on. Some plant specific factors like vine diameter, wet/ dry weight ratio of vine, phloem sap pressure, the compactness of the vine, wet/dry weight ratio of leaflet, length of leaf petiole, diameter of leaflet vein were identified as modulating factors. The impact of resistant variety on aphid was also investigated for better understanding of aphid defense mechanism.展开更多
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
文摘The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.
文摘The oi!bearing area of Gudao Oilfield covers 80.9 square kilometers.with 373 million tons of oil in place.It is a large drape anticlinal.Neogene Gu-dao Formation is main oil-beraing reservoir devel-oped with dip gentle from 30'to 1°30'in general.The main oil-bearing sequences can be divided into 6 sand groups and 34 layers in detail.in which the Ng°-Ng°sand groups are the main payzones in which oil in place accounts for 97.2%of the total.
文摘The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water.
文摘In order to recognize the distribution of dispersed remaining oil,reservoirs should be described in more detail and quantitatively to establish refined and sophisticated 3D quantified reservoir model which can reflect the detailed variation in the reservoir and its structure.The key point of sophistication and quantification of reservoir characterization is to describe the geo-metry of interwell sandbodies and to estimate their reservoir parameters.
文摘As stated above,the ultimate recovery of conventional oil in our country is estimated to be 33.6%,i.e,about 66.4%of the oil reserves cannot be recovered by water injection and may only be targeted for tertiary oil recovery or for other ty pes.of new technologics.A screening of 82 major oifields developed by water injection and an analysis of their potential showed that application of tertiary recovery technique such as polymer flooding,surfactant flooding and gas miseible flooding will inerease the oil recovery by 12.4%.The total recoverable reserve increment cor-responds to 56%of the current remaining recover-able reserves.This means that the recoverable r'eserves in OUr country can increase by more than one half by a fully tapping of the potential.Therefore,the development of tertiary recovery technology will be an important strategic measure in China's petroleum industry.
基金funded by National Natural Science Foundation of China, grant ID: 11172245。
文摘The mitigation of blast shock with water has broad application prospects. Understanding the mitigation effects on the reflected overpressure of the explosion shock with water surrounding an explosive in a confined space is of great significance for military explosives safety applications. To estimate the effects of the parameters on the reflected overpressure of blasted shock wave, a series of experiments were carried out in confined containers with spherical explosives immersed in a certain thickness of water,and numerical simulations were conducted to explore the corresponding mechanisms. The results reveal that the reflected overpressure is abnormally aggravated at a small scaled distance. This aggravation is due to the high impulse of the bulk accelerated water shell converted from the explosion. With increasing scaled distance, the energy will be gradually dissipated. The mitigation effects will appear with the dispersed water phase front impacting at a larger scaled distance, except in the case of a dense water phase state. A critical scaled distance range of 0.7-0.8 m/kg^(1/3) for effective mitigation was found. It is suggested that the scaled distance of space walls should be larger than the critical value for a certain water-to-explosive weight ratio range(5-20).
文摘According to drilling core analysis and a lot of.field information,it was proved that the current reservoir range above oil-water contact detected by observation wells,was no more a complete pure oil bearing zone with exception of water cone,but a complicated oil-water mixed zone.The oil,satura-tion in the fracture system varied greatly.The large fractures with width of over 100μm were al-most water flushed,the middle fractures between 50-100μm were water encroachment zone and the small fractures less than 50μm were still in a good oil-bearing condition.
文摘The switchable oil layer driven by electrowetting gives visible color and light valve control, which is the basis of Electro-Fluidic Displays. The colored oil’s property is a key factor that influences the Electro-Fluidic Displays switching behavior. A purple oil was formulated by the oil-soluble purple dye in decane in this study. The dye molecule itself is nonpolar and it doesn’t dissolve in water. The concentration of colored oil influenced the oil/water interfacial tension and oil viscosity. The relationship of EFD switching behavior with oil/water interfacial tension, oil viscosity, and oil conductivity has been systematically investigated. The oil/water interfacial tension decreased with increasing oil concentration, in the meanwhile, the conductivity increased. Oil conductivity was one of the key factors that influenced the Electro-Fluidic Displays optical property. We found for the first time that at the lower oil concentration (2% - 10%), the interfacial tension plays a main role effect on the rupture voltage and response time, but as the conductivity of higher concentration of colored oil increased (at 20%), the rupture voltage-controlled both by conductivity and interfacial tension.
基金supported by the Shanghai Research Institute of Petrochemical Technology,SINOPEC
文摘In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins, the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed. The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio, the more gaseous hydrocarbons were obtained. Moreover, a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established. These results are validated by corresponding experiments. The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.
文摘The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this type of well pattern, determining the horizontal well is affected by which injection wells, especially when the injecting water breaks through, accurately determining the direction of water inflow will provide an important basis for targeted water well measures. Based on the production performance data of horizontal wells, the semi logarithmic relationship curves of water-oil ratio, derivative water-oil ratio, and cumulative production were used for the first time to determine the breakthrough problem of water injection in the surrounding water injection wells of horizontal wells based on their response characteristics. The adaptability of this method under different influencing factors was analyzed. Introducing the parameter of cumulative production not only preserves the variation trend of the derivative of water-oil ratio with time, but also facilitates the processing of actual production data.
文摘This paper presents a new method of injection-production allocation estimation for water-flooding mature oilfields.The suggested approach is based on logistic growth rate functions and several type-curve matching methods.Using the relationship between these equations,oil production and water injection rate as well as injection-production ratio can be easily forecasted.The calculation procedure developed and outlined in this paper requires very few production data and is easily implemented.Furthermore,an oilfield case has been analyzed.The synthetic and field cases validate the calculation procedure,so it can be accurately used in forecasting production data,and it is important to optimize the whole injection-production system.
文摘Aphid establishes colony in the selective plant parts like vine, leaf petiole, leaflet, inflorescence, and tender fruit in Dolichos lablab Linn but not the entire plant. In this study, the aphid colony establishment in vine is focused to understand the differential resistance response between two varieties. At the early stage of aphid infestation, the aphid colony establishment was significantly different between two genotypes (p value = 0.00) and abbreviated as “resistant” variety that supported lower aphid proliferation (mean value = 48.2 ± 2.2) and “susceptible” variety that supported comparatively higher aphid proliferation (mean value = 215.5 ± 16.9). The total aphid number was significantly different between the two varieties, realized at the early infestation stage when both “antixenosis” and “antibiosis” defense mechanisms were working on. Some plant specific factors like vine diameter, wet/ dry weight ratio of vine, phloem sap pressure, the compactness of the vine, wet/dry weight ratio of leaflet, length of leaf petiole, diameter of leaflet vein were identified as modulating factors. The impact of resistant variety on aphid was also investigated for better understanding of aphid defense mechanism.