This paper deals with the Alienor method to tackle multiobjective nonlinear optimization problems. In this approach, the multiple criteria of the optimization problem are aggregated into a single one using weighted su...This paper deals with the Alienor method to tackle multiobjective nonlinear optimization problems. In this approach, the multiple criteria of the optimization problem are aggregated into a single one using weighted sums. Then, the resulting single objective nonlinear optimization problem is solved using the Alienor method associated with the Optimization Preserving Operators technique which has proved to be suitable for (nonlinear) optimization problems with a large number of variables (see [1]). The proposed approach is evaluated through test problems. The results show that the approach provides good approximations of the Pareto front while requiring small computational time, even for large instances.展开更多
Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent metho...Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.展开更多
文摘This paper deals with the Alienor method to tackle multiobjective nonlinear optimization problems. In this approach, the multiple criteria of the optimization problem are aggregated into a single one using weighted sums. Then, the resulting single objective nonlinear optimization problem is solved using the Alienor method associated with the Optimization Preserving Operators technique which has proved to be suitable for (nonlinear) optimization problems with a large number of variables (see [1]). The proposed approach is evaluated through test problems. The results show that the approach provides good approximations of the Pareto front while requiring small computational time, even for large instances.
文摘Minimization of the weighted nonlinear sum of squares of differences may be converted to the minimization of sum of squares. The Gauss-Newton method is recalled and the length of the step of the steepest descent method is determined by substituting the steepest descent direction in the Gauss-Newton formula. The existence of minimum is shown.