期刊文献+
共找到541篇文章
< 1 2 28 >
每页显示 20 50 100
Fault Diagnosis Model Based on Fuzzy Support Vector Machine Combined with Weighted Fuzzy Clustering 被引量:3
1
作者 张俊红 马文朋 +1 位作者 马梁 何振鹏 《Transactions of Tianjin University》 EI CAS 2013年第3期174-181,共8页
A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to ... A fault diagnosis model is proposed based on fuzzy support vector machine (FSVM) combined with fuzzy clustering (FC).Considering the relationship between the sample point and non-self class,FC algorithm is applied to generate fuzzy memberships.In the algorithm,sample weights based on a distribution density function of data point and genetic algorithm (GA) are introduced to enhance the performance of FC.Then a multi-class FSVM with radial basis function kernel is established according to directed acyclic graph algorithm,the penalty factor and kernel parameter of which are optimized by GA.Finally,the model is executed for multi-class fault diagnosis of rolling element bearings.The results show that the presented model achieves high performances both in identifying fault types and fault degrees.The performance comparisons of the presented model with SVM and distance-based FSVM for noisy case demonstrate the capacity of dealing with noise and generalization. 展开更多
关键词 FUZZY support vector machine FUZZY clustering SAMPLE weight GENETIC algorithm parameter optimization FAULT diagnosis
下载PDF
Ensemble Nonlinear Support Vector Machine Approach for Predicting Chronic Kidney Diseases
2
作者 S.Prakash P.Vishnu Raja +3 位作者 A.Baseera D.Mansoor Hussain V.R.Balaji K.Venkatachalam 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1273-1287,共15页
Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urb... Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanizedcountries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples isbecoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions.The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the proposed work, theiterative weighted map reduce framework is introduced for the effective management of large dataset samples. A binary classification problem is formulated usingensemble nonlinear support vector machines and random forests. Thus, instead ofusing the normal linear combination of kernel activations, the proposed work creates nonlinear combinations of kernel activations in prototype examples. Furthermore, different descriptors are combined in an ensemble of deep support vectormachines, where the product rule is used to combine probability estimates ofdifferent classifiers. Performance is evaluated in terms of the prediction accuracyand interpretability of the model and the results. 展开更多
关键词 Chronic disease CLASSIFICATION iterative weighted map reduce machine learning methods ensemble nonlinear support vector machines random forests
下载PDF
基于ICEEMDAN和时变权重集成预测模型的变压器油中溶解气体含量预测 被引量:2
3
作者 马宏忠 肖雨松 +3 位作者 孙永腾 李勇 朱雷 许洪华 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期210-220,共11页
为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMD... 为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)和灰色关联系数时变权重集成预测模型的变压器油中溶解气体预测方法。首先将溶解气体含量序列模态分解为一系列具有不同时间尺度的子序列。然后,使用门控循环神经网络和麻雀搜索算法优化支持向量机对各子序列进行训练,组合为一个集成预测模型;并比较不同预测方法的预测精度,计算灰色关联系数时变权重,形成各子系列的预测结果。最后将各子序列的预测结果叠加重构,得到最终预测结果。算例分析结果显示:该方法单步预测的均方根误差、平均绝对误差和相关系数分别为0.593、0.422和0.768,相比其他算法在预测精度上有明显提升,同时具有很强的泛化性能,可以为油浸式变压器内部状态监测提供依据。 展开更多
关键词 油中溶解气体 ICEEMDAN 麻雀搜索算法 支持向量机 门控循环神经网络 时变权重 集成模型
下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
4
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
下载PDF
融合多特征信息与GWO-SVM的机械关键设备故障诊断
5
作者 宋玲玲 王琳 +1 位作者 钟丽 李晨曦 《机械设计与制造》 北大核心 2024年第11期116-121,共6页
为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的... 为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的机械关键设备故障诊断模型。首先,提取机械关键设备故障信号的时域特征、频域特征和多尺度加权排列熵特征,分别对比不同特征的机械关键设备故障诊断结果。其次,为提高SVM模型性能,运用GWO算法对SVM模型的惩罚参数P和核函数参数g进行优化选择,提出一种融合多特征信息与GWO-SVM的机械设备故障诊断模型。与GA-SVM、PSO-SVM和SVM相比,基于GWO-SVM的机械设备故障诊断模型的诊断精度最高。这里算法可以有效提高机械关键设备故障诊断正确率,为机械关键设备故障诊断提供了新的方法。 展开更多
关键词 时域特征 灰狼优化算法 支持向量机 频域特征 多尺度加权排列熵
下载PDF
基于特征判定系数的电力变压器振动信号故障诊断
6
作者 谢丽蓉 严侣 +1 位作者 吐松江·卡日 张馨月 《电力工程技术》 北大核心 2024年第3期217-225,共9页
变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposit... 变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和特征熵权法(entropy weight method,EWM)进行故障诊断的方法。通过相关系数与峭度加权(correlation coefficient and weighted kurtosis,CCWK)原则筛选CEEMDAN分量并重构信号,在实现剔除冗余分量的同时,提升变压器振动信号特征的表征能力;利用EWM构建特征判定系数实现单一数据诊断变压器故障类型;通过主成分分析法减小混合域特征尺度,采用鸡群优化算法优化支持向量机(support vector machine,SVM)模型进行故障诊断。对某变电站110 kV三相油浸式变压器进行分析,结果表明与概率神经网络和SVM等变压器故障诊断方法相比,文中方法能在提前定性故障类型的同时,进一步提高变压器故障诊断的准确率与效率。 展开更多
关键词 故障诊断 变压器振动信号 自适应噪声完备集合经验模态分解(CEEMDAN) 信噪比 熵权法(EWM) 支持向量机(SVM) 鸡群优化算法
下载PDF
基于特征加权混合隶属度的模糊孪生支持向量机 被引量:1
7
作者 吕思雨 赵嘉 +2 位作者 吴烈阳 张翼英 韩龙哲 《南昌工程学院学报》 CAS 2024年第1期93-101,118,共10页
模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对... 模糊孪生支持向量机(FTSVM)忽略了不同特征间的差异,导致核函数或距离的计算无法准确反映样本间的相似性,使FTSVM在处理含有大量不相关或弱相关特征的高维数据分类时,难以达到良好分类效果;且隶属度的设计未有效区分离群点或噪声。针对以上问题,提出了一种基于特征加权混合隶属度的FM-FTSVM。首先计算每个特征的信息增益,并依据信息增益值的大小为特征赋予权重,降低不相关或弱相关特征的作用,使其能更好地应用于高维数据分类;然后,为每一类样本构造一个最小包围球计算基于紧密度的特征加权隶属度,并结合基于距离的特征加权隶属度得到特征加权混合隶属度,综合考虑样本点到类中心的特征加权欧式距离和样本间的紧密程度,可更好识别离群点或噪声数据;最后,融合特征加权核函数,降低不相关特征对核函数或距离计算产生的影响。与对比算法在人工数据集、高维数据集和UCI数据集上进行比较,发现本文提出的方法在区分离群点、噪声和有效样本上有明显优势,且在高维数据集上可获得更好分类效果。 展开更多
关键词 模糊孪生支持向量机 特征加权 信息增益 紧密度 隶属度 高维数据
下载PDF
中国冬季降水的支持向量机预测模型研究
8
作者 姚晨伟 杨子寒 +3 位作者 白慧敏 吴银忠 龚志强 封国林 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期3670-3685,共16页
我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学... 我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学习方法提高中国冬季降水的预测准确率.基于NCEP_CFS, ECMWF_SYSTEM, BCC_CSM等五个模式数据以及站点数据,建立针对冬季降水的SVM集成预测模型,并与单个模式和等权集合平均模型(AVE)加以对比.SVM模型因其强泛化和处理非线性问题的能力,在中国冬季降水预测中表现良好.研究表明:(1)SVM模型较单个模式及AVE模型的预测准确性与稳定性得到大幅提升,SVM模型的PS评分和PCS评分显著高于单个成员模式的结果,最大分别提高了8.0(12.6%)和3.9(7.4%),较AVE模型则最大分别提高了5.4(8.2%)和2.1(3.8%),预报技巧的提高在观测资料相对缺乏的西南和西北地区尤为明显.(2)从均方根误差和时间相关系数的空间分布上来看,SVM模型对其成员模式在西藏地区、西南地区、华东及华南地区误差较大的情况改善明显,误差最大降低了259(90.9%),预报技巧最大提高了1.13.(3)独立样本检验中,SVM模型的PS评分和PCS评分显著高于单个模式和AVE模型,最大提高了10.79(20.3%)和11.39(27.3%).因此,SVM模型的构建,将有助于进一步提高中国冬季降水预测的准确性和稳定性,为气象防灾减灾和气候资源开发利用等提供重要技术支撑. 展开更多
关键词 降水 支持向量机 等权集合平均模型 集成预测
下载PDF
基于LDA-wSVM模型的文本分类研究 被引量:29
9
作者 李锋刚 梁钰 +1 位作者 GAO Xiao-zhi ZENGER Kai 《计算机应用研究》 CSCD 北大核心 2015年第1期21-25,共5页
SVM分类算法处理高维数据具有较大优势,但其未考虑语义的相似性度量问题,而LDA主题模型可以解决传统的文本分类中相似性度量和主题单一性问题。为了充分结合SVM和LDA算法的优势并提高分类精确度,提出了一种新的LDA-w SVM高效分类算法模... SVM分类算法处理高维数据具有较大优势,但其未考虑语义的相似性度量问题,而LDA主题模型可以解决传统的文本分类中相似性度量和主题单一性问题。为了充分结合SVM和LDA算法的优势并提高分类精确度,提出了一种新的LDA-w SVM高效分类算法模型。利用LDA主题模型进行建模和特征选择,确定主题数和隐主题—文本矩阵;在经典权重计算方法上作改进,考虑各特征项与类别的关联度,设计了一种新的权重计算方法;在特征词空间上使用这种基于权重计算的w SVM分类器进行分类。实验基于R软件平台对搜狗实验室的新闻文本集进行分类,得到了宏平均值为0.943的高精确度分类结果。实验结果表明,提出的LDA-w SVM模型在文本自动分类中具有很好的优越性能。 展开更多
关键词 文本分类 潜在狄利克雷分布 支持向量机 权重计算 吉普斯抽样
下载PDF
具有间隔分布优化的最小二乘支持向量机
10
作者 刘玲 巩荣芬 +1 位作者 储茂祥 刘历铭 《微电子学与计算机》 2024年第8期1-9,共9页
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS... 最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。 展开更多
关键词 最小二乘支持向量机 大间隔分布机 间隔分布优化 权重线性损失
下载PDF
基于HHO-SVM的抗SSDF攻击协作频谱感知方法
11
作者 王全全 顾志豪 +1 位作者 吴城坤 宛汀 《系统工程与电子技术》 EI CSCD 北大核心 2024年第6期2146-2154,共9页
针对认知无线电网络中的频谱感知数据伪造(spectrum sensing data falsification,SSDF)攻击问题,提出一种基于哈里斯鹰优化(Harris hawks optimization,HHO)算法和支持向量机(support vector machine,SVM)的抗SSDF攻击协作频谱感知方法... 针对认知无线电网络中的频谱感知数据伪造(spectrum sensing data falsification,SSDF)攻击问题,提出一种基于哈里斯鹰优化(Harris hawks optimization,HHO)算法和支持向量机(support vector machine,SVM)的抗SSDF攻击协作频谱感知方法。首先从报告信息矩阵中提取用于区分次用户(secondary users,SU)类别的特征向量。其次通过HHO算法优化SVM内核参数,通过优化的SVM模型检测恶意SU,提高了在复杂感知环境中对SU分类的准确率。最后根据优化的SVM模型计算获得SU的可信度,并以可信度为权重融合感知数据,进一步加强系统的抗攻击性。仿真结果表明,所提方法能够对不同的SSDF攻击场景实现有效防御,相比现有的方法具有更好的频谱感知性能。 展开更多
关键词 频谱感知 频谱感知数据伪造攻击 支持向量机 加权融合
下载PDF
基于数据均衡化的船舶涡轮增压系统故障诊断
12
作者 李星贤 肖文 +2 位作者 张斌 龚梅杰 陈辉 《武汉理工大学学报(交通科学与工程版)》 2024年第3期453-458,共6页
在船舶涡轮增压系统的故障诊断方面,针对正常状态与故障状态数据不平衡的问题,采用基于熵权重的Entropy-Weight SMOTE方法对数据样本进行增强,改善样本的不均衡性,并结合支持向量机(SVM)进行故障诊断.基于已有SMOTE算法与熵理论,以舰船... 在船舶涡轮增压系统的故障诊断方面,针对正常状态与故障状态数据不平衡的问题,采用基于熵权重的Entropy-Weight SMOTE方法对数据样本进行增强,改善样本的不均衡性,并结合支持向量机(SVM)进行故障诊断.基于已有SMOTE算法与熵理论,以舰船动力系统仿真平台运行数据作为样本集,搭建基于熵理论的Entropy-Weight SMOTE与SVM的涡轮增压系统故障诊断模型;将舰船动力仿真平台数据样本导入模型进行仿真计算,综合各类评价指标,评判该方法的可行性.仿真实验表明在采用Entropy-Weight SMOTE进行样本均衡化后,分类准确度和综合指标(F-Measure)提升了5.1%和6.5%.结果表明:该方法可以有效提高数据样本不平衡时涡轮增压系统的故障分类效果. 展开更多
关键词 支持向量机 涡轮增压系统 样本均衡化 故障诊断 熵权重
下载PDF
基于改进PSO-SVM的薄壁件铆接质量检测
13
作者 郝伟光 李芳 +1 位作者 闫俊伟 郝博 《组合机床与自动化加工技术》 北大核心 2024年第10期132-137,142,共7页
针对传统铆接几何公差质量检测极易造成错检、漏检等问题,提出了基于改进PSO-SVM的铆接质量检测方法。采用惯性权重自适应调整的策略,并选择合适的学习因子,有效提高了检测准确性;针对小样本提出最小二乘SVM算法,提高计算速度获得最优解... 针对传统铆接几何公差质量检测极易造成错检、漏检等问题,提出了基于改进PSO-SVM的铆接质量检测方法。采用惯性权重自适应调整的策略,并选择合适的学习因子,有效提高了检测准确性;针对小样本提出最小二乘SVM算法,提高计算速度获得最优解;利用改进PSO优化最小二乘SVM的惩罚因子参数值和核函数参数值。并以制孔和铆接后的6061铝合金板模拟飞机薄壁件铆接样本,使用搭配远心镜头的CCD相机采集图像并建立数据集,验证了方法的有效性。 展开更多
关键词 粒子群优化 最小二乘支持向量机 惯性权重自适应调整 制孔及铆接质量检测
下载PDF
非线性时变PSO优化SVM的入侵检测方法
14
作者 唐风扬 段嘉霖 +1 位作者 熊健 覃仁超 《计算机与数字工程》 2024年第8期2400-2404,2517,共6页
针对现有使用时变粒子群算法(TVCPSO)优化支持向量机(Support Vector Machines,SVM)对网络流量数据进行入侵检测的方法存在的粒子搜索能力不足等问题,提出了一种非线性时变粒子群算法优化SVM参数的入侵检测方法。该方法首先融合ReliefF... 针对现有使用时变粒子群算法(TVCPSO)优化支持向量机(Support Vector Machines,SVM)对网络流量数据进行入侵检测的方法存在的粒子搜索能力不足等问题,提出了一种非线性时变粒子群算法优化SVM参数的入侵检测方法。该方法首先融合ReliefF算法与信息增益算法对网络流量数据进行特征降维,然后通过非线性学习因子和自适应权重改进时变粒子群算法优化支持SVM,最后通过SVM完成网络流量的检测。NSL-KDD上的结果表明论文方法达到了97.86%的准确率、97.67%的检测率和2%的误报率,验证了方法的有效性。 展开更多
关键词 特征选择 时变粒子群算法 自适应权重 支持向量机 入侵检测
下载PDF
基于熵权法的旋转机械故障诊断研究
15
作者 彭绪意 刘泽 +5 位作者 吴中华 聂赛 章志平 姚婵 冯陈 张玉全 《水电与抽水蓄能》 2024年第3期41-48,共8页
在大数据背景下,基于机器学习的旋转机械故障诊断研究发展迅速。对于非线性非平稳的振动信号,提出了基于熵权法优化PSO-SVM故障诊断模型,强化特征提取能力。本文数据来自CWRU数据集和抽水蓄能电站实测数据,首先,分别对每个数据集的四种... 在大数据背景下,基于机器学习的旋转机械故障诊断研究发展迅速。对于非线性非平稳的振动信号,提出了基于熵权法优化PSO-SVM故障诊断模型,强化特征提取能力。本文数据来自CWRU数据集和抽水蓄能电站实测数据,首先,分别对每个数据集的四种故障滑动采样、平滑降噪等预处理,其次,对故障样本VMD分解,利用样本熵、能量熵、模糊熵、功率谱熵构建特征向量,采用熵权法选取权值最大的特征向量作为EWM-PSO-SVM模型输入,得到诊断结果,同时与其他方法进行对比证实方法有效性与准确性。 展开更多
关键词 熵权法 粒子群算法 变分模态分解 支持向量机 故障诊断 动力学熵
下载PDF
基于SPSO-WK-TWSVM的复合材料层合板损伤辨识方法 被引量:2
16
作者 刘小峰 王邦昕 +1 位作者 艾帆 韦代平 《振动与冲击》 EI CSCD 北大核心 2021年第15期290-295,302,共7页
针对复合材料层合板的基体裂纹损伤与脱层损伤的不易区分辨识的问题,采用Lamb波对层合板进行损伤检测,对接收到的传感信号进行特征提取与筛选,创新性地引入加权核双子支持向量基(weighted kernels-twin support vector machine,WK-TWSVM... 针对复合材料层合板的基体裂纹损伤与脱层损伤的不易区分辨识的问题,采用Lamb波对层合板进行损伤检测,对接收到的传感信号进行特征提取与筛选,创新性地引入加权核双子支持向量基(weighted kernels-twin support vector machine,WK-TWSVM)的机器学习方法对基体裂纹与脱层损伤进行自动分类识别。为了进一步提高损伤辨识精度,采用简化粒子群优化(simple particle swarm optimization,SPSO)算法对WK-TWSVM的核函数权值及模型参数进行了寻优处理,并与其他粒子群优化算法就行了分析比较。试验分析结果表明,基于Lamb波的SPSO-WK-TWSVM复合材料层合板损伤辨识方法能够对复合材料层合板基体裂纹与脱层损伤进行准确的自动识别,识别精度明显高于其他TWSVM优化算法及传统的机器学习方法。 展开更多
关键词 复合材料层合板 LAMB波 损伤分类辨识 简化粒子群优化 双子支持向量基
下载PDF
基于IAO-LSSVM模型的基坑周围建筑物沉降预测:以深圳华强南站地铁基坑为例
17
作者 贾磊 贾世济 高帅 《科学技术与工程》 北大核心 2024年第7期2885-2892,共8页
针对当前基坑开挖引发建筑物沉降预测模型存在精度不足、收敛速度慢、易陷入局部最优等缺点,提出了一种基于改进天鹰算法(improved aquila optimizer, IAO)优化最小二乘支持向量机(least squares support vector machine, LSSVM)的建筑... 针对当前基坑开挖引发建筑物沉降预测模型存在精度不足、收敛速度慢、易陷入局部最优等缺点,提出了一种基于改进天鹰算法(improved aquila optimizer, IAO)优化最小二乘支持向量机(least squares support vector machine, LSSVM)的建筑物沉降预测模型。利用Tent混沌映射提高天鹰算法的种群多样性水平,再通过自适应权重强化算法的全阶段寻优能力;引入IAO算法优化LSSVM的正则化参数和核函数宽度,构建基于IAO-LSSVM的建筑物沉降预测模型,并将该预测模型在深圳华强南某地铁基坑工程中进行了验证。结果表明:该沉降预测模型相比于传统预测模型精度更高、收敛更快、跳出局部最优域的能力强;该模型预测值与实际沉降监测值吻合度较高,其误差在5%左右,更适合预测城市中地铁基坑开挖引起的周围建筑物沉降。 展开更多
关键词 建筑物沉降预测 Tent混沌映射 自适应权重 改进天鹰算法 最小二乘支持向量机
下载PDF
网络化制造资源状态估计研究——基于主成分分析(PCA)和加权支持向量机(WSVM)
18
作者 焦合军 施进发 李济顺 《郑州航空工业管理学院学报》 2008年第2期78-80,共3页
针对网络化制造资源配置受多因素影响,变化趋势复杂,难以用单一预测方法进行有效预测的问题,提出一种新的基于主成分分析和加权支持向量机的智能混合预测模型。模型首先使用主成分分析弱化数据序列波动性,然后借助加权支持向量机在处理... 针对网络化制造资源配置受多因素影响,变化趋势复杂,难以用单一预测方法进行有效预测的问题,提出一种新的基于主成分分析和加权支持向量机的智能混合预测模型。模型首先使用主成分分析弱化数据序列波动性,然后借助加权支持向量机在处理小样本和模糊神经系统处理非线性模糊信息的优点,进行趋势预测。研究结果表明,所提出的模型能有效地提高状态估计方案的可行性,为网络化制造资源状态估计的在线实施提供了方便。 展开更多
关键词 主成分分析 加权支持向量机 网络化制造 资源状态估计
下载PDF
基于改进灰狼算法优化WLSSVM的短期风功率预测
19
作者 陈琨 丁苗 +3 位作者 刘炬 段洁 刘闯 徐达 《内蒙古电力技术》 2024年第2期1-7,共7页
为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确... 为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。 展开更多
关键词 风功率 改进灰狼算法 WLSSVM C-C法
下载PDF
基于SVM多特征融合的绝缘子缺陷检测算法研究
20
作者 王照 葛馨远 饶毅 《自动化技术与应用》 2024年第5期83-88,共6页
绝缘子是输电线路中常用部件,每年因绝缘子故障引起的事故超过电网故障的一半,这严重危害着线路的使用和运行寿命。因此,及时对绝缘子故障进行排查是十分重要的。我们提出了一种基于SVM多特征融合的绝缘子缺陷检测算法,该算法首先对原... 绝缘子是输电线路中常用部件,每年因绝缘子故障引起的事故超过电网故障的一半,这严重危害着线路的使用和运行寿命。因此,及时对绝缘子故障进行排查是十分重要的。我们提出了一种基于SVM多特征融合的绝缘子缺陷检测算法,该算法首先对原始图像进行预处理,得到暗通道特征层和灰度图像,然后在此基础上提取出HSI特征层、细节特征层、统计特征层和纹理特征层,将上述特征层叠加成一个三维的特征矩阵。接着选取正、负样本像素点及其所对应的特征信息作为训练特征,采用支持向量机算法对其进行训练,得到一个分类器模型。最后将原始图像的其他所有像素点的特征信息输入到该分类器中,得到绝缘子缺陷的坐标位置。实验结果表明,提出的算法能有效地检测出输入图像中的绝缘子缺陷,验证了该改进算法的可行性及有效性。 展开更多
关键词 绝缘子缺陷检测 GABOR滤波 加权最小二乘滤波 多特征融合 支持向量机
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部