期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Neurorehabilitation using a voluntary driven exoskeletal robot improves trunk function in patients with chronic spinal cord injury: a single-arm study 被引量:2
1
作者 Hiroki Okawara Syoichi Tashiro +8 位作者 Tomonori Sawada Keiko Sugai Kohei Matsubayashi Michiyuki Kawakami Satoshi Nori Osahiko Tsuji Narihito Nagoshi Morio Matsumoto Masaya Nakamura 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期427-432,共6页
Body weight-supported treadmill training with the voluntary driven exoskeleton(VDE-BWSTT) has been shown to improve the gait function of patients with chronic spinal cord injury. However, little is known whether VDE-B... Body weight-supported treadmill training with the voluntary driven exoskeleton(VDE-BWSTT) has been shown to improve the gait function of patients with chronic spinal cord injury. However, little is known whether VDE-BWSTT can effectively improve the trunk function of patients with chronic spinal cord injury. In this open-label, single-arm study, nine patients with chronic spinal cord injury at the cervical or thoracic level(six males and three females, aged 37.8 ± 15.6 years, and time since injury 51.1 ± 31.8 months) who underwent outpatient VDE-BWSTT training program at Keio University Hospital, Japan from September 2017 to March 2019 were included. All patients underwent twenty 60-minute gait training sessions using VDE. Trunk muscular strength, i.e., the maximum force against which patient could maintain a sitting posture without any support, was evaluated in four directions: anterior, posterior, and lateral(right and left) after 10 and 20 training sessions. After intervention, lateral muscular strength significantly improved. In addition, a significant positive correlation was detected between the change in lateral trunk muscular strength after 20 training sessions relative to baseline and gait speed. The change in trunk muscular strength after 20 training sessions relative to baseline was greatly correlated with patient age. This suggests that older adult patients with chronic spinal cord injury achieved a greater improvement in trunk muscle strength following VDE-BWSTT. All these findings suggest that VDE-BWSTT can improve the trunk function of patients with chronic spinal cord injury and the effect might be greater in older adult patients. The study was approved by the Keio University of Medicine Ethics Committee(IRB No. 20150355-3) on September 26, 2017. 展开更多
关键词 body weight-supported treadmill training gait disorders hybrid assistive limb NEUROLOGIC neurophysiotherapy postural balance precision medicine robot-assisted gait training robotics spinal cord injury TRUNK
下载PDF
Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people
2
作者 Donghai WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第6期920-936,共17页
This paper presents a sensor-guided gait-synchronization system to help potential unilateral knee-injured people walk normally with a weight-supported lower-extremity-exoskeleton(LEE).This relieves the body weight loa... This paper presents a sensor-guided gait-synchronization system to help potential unilateral knee-injured people walk normally with a weight-supported lower-extremity-exoskeleton(LEE).This relieves the body weight loading on the knee-injured leg and synchronizes its motion with that of the healthy leg during the swing phase of walking.The sensor-guided gait-synchronization system is integrated with a body sensor network designed to sense the motion/gait of the healthy leg.Guided by the measured joint-angle trajectories,the motorized hip joint lifts the links during walking and synchronizes the knee-injured gait with the healthy gait by a half-cycle delay.The effectiveness of the LEE is illustrated experimentally.We compare the measured joint-angle trajectories between the healthy and knee-injured legs,the simulated knee forces,and the human-exoskeleton interaction forces.The results indicate that the motorized hip-controlled LEE can synchronize the motion/gait of the combined body-weight-supported LEE and injured leg with that of the healthy leg. 展开更多
关键词 Sensor-guided Lower-extremity-exoskeleton Body sensor network Gait synchronization weight-support
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部