Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform...This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures.展开更多
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc...Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.展开更多
In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two...In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.展开更多
In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compens...In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.展开更多
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金the grant from the Ph.D. Programs Foun-dation of Ministry of Education of China (No. 20060280003)the Shanghai Leading Academic Dis-cipline Project (Project No.T0102).
文摘This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures.
基金supported by National Natural Science Foundation of China(No.62171445)。
文摘Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.
基金supported by the National Basic Research Program of China under Grant 2013CB329003in part by the National Natural Science Foundation General Program of China under Grant 61171110
文摘In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.
基金supported in part by the National Natural Science Foundation of China under Grant 61901140,in part by the National Natural Science Foundation of China under Grant 62171151in part by the Science and Technology on Communication Networks Laboratory under Grant 6142104190203in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.