In this paper, the weighted Herz-Morrey spaces are introduced and the estimates for Marcinkiewicz Integrals on the weighted Herz-Morrey spaces are studied.
In this paper,the Weighted Herz-Morrey spaces are introduced and the estimates for Calderón-Zygmund operators on the weighted Herz-Morrey spaces are studied.
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem...This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.展开更多
This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of th...This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).展开更多
In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey ...In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.展开更多
In this paper, we introduce the A, weights into the tent space, many important results in the tent space are generalized. Also, new relations between the A, weights and Carleson measures are obtained.
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of si...In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.展开更多
In this article, we study the boundedness of weighted composition operators between different vector-valued Dirichlet spaces. Some sufficient and necessary conditions for such operators to be bounded are obtained exac...In this article, we study the boundedness of weighted composition operators between different vector-valued Dirichlet spaces. Some sufficient and necessary conditions for such operators to be bounded are obtained exactly, which are different completely from the scalar-valued case. As applications, we show that these vector-valued Dirichlet spaces are different counterparts of the classical scalar-valued Dirichlet space and characterize the boundedness of multiplication operators between these different spaces.展开更多
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the w...In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M...Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).展开更多
We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A o...Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.展开更多
基金Supported by the NSF of China(10371087)Supported by the Education Committee of Anhui Province(2003kj034zd)
文摘In this paper, the weighted Herz-Morrey spaces are introduced and the estimates for Marcinkiewicz Integrals on the weighted Herz-Morrey spaces are studied.
基金The NSF of China (10371087)Education Committee of Anhui Province(2007kj)
文摘In this paper,the Weighted Herz-Morrey spaces are introduced and the estimates for Calderón-Zygmund operators on the weighted Herz-Morrey spaces are studied.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
文摘This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies.
文摘This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).
基金supported by the National Natural Science Foundation of China(Nos.11761026)Guangxi Natural Science Foundation(No.2020GXNSFAA159085)。
文摘In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
文摘In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
文摘In this paper, we introduce the A, weights into the tent space, many important results in the tent space are generalized. Also, new relations between the A, weights and Carleson measures are obtained.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金Supported by the National Natural Science Foundation of China(11561057,11226104)the Jiangxi Natural Science Foundation of China(20151BAB211002)+1 种基金the Science Foundation of Jiangxi Education Department(GJJ151054)the Scientific Research project of Shangrao Normal University
文摘In this paper, the authors prove the weighted boundedness of singular integral and fractional integral with a rough kernel on the weighted λ-central Morrey space. Moreover, the weighted estimate for commutators of singular integral with a rough kernel on the weighted λ-central Morrey space is also given.
基金supported by the National Natural Science Foundation of China (10901158)
文摘In this article, we study the boundedness of weighted composition operators between different vector-valued Dirichlet spaces. Some sufficient and necessary conditions for such operators to be bounded are obtained exactly, which are different completely from the scalar-valued case. As applications, we show that these vector-valued Dirichlet spaces are different counterparts of the classical scalar-valued Dirichlet space and characterize the boundedness of multiplication operators between these different spaces.
基金supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
文摘In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金supported by the National Natural Science Foundation of China (11071190)
文摘Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
文摘Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.