期刊文献+
共找到8,396篇文章
< 1 2 250 >
每页显示 20 50 100
Projecting Wintertime Newly Formed Arctic Sea Ice through Weighting CMIP6 Model Performance and Independence 被引量:1
1
作者 Jiazhen ZHAO Shengping HE +2 位作者 Ke FAN Huijun WANG Fei LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1465-1482,共18页
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar... Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained). 展开更多
关键词 wintertime newly formed Arctic sea ice model democracy model weighting scheme model performance model independence
下载PDF
Algorithms and statistical analysis for linear structured weighted total least squares problem
2
作者 Jian Xie Tianwei Qiu +2 位作者 Cui Zhou Dongfang Lin Sichun Long 《Geodesy and Geodynamics》 EI CSCD 2024年第2期177-188,共12页
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand... Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations. 展开更多
关键词 Linear structured weighted total least SQUARES ERRORS-IN-VARIABLES Errors-in-observations Functional modelmodification Stochastic model modification Accuracyevaluation
下载PDF
Evaluation of soil erosion vulnerability in Hubei Province of China using RUSLE model and combination weighting method
3
作者 YANG Yanpan TIAN Pei +3 位作者 JIA Tinghui WANG Fei YANG Yang HUANG Jianwu 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3318-3336,共19页
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not... Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity. 展开更多
关键词 Soil erosion vulnerability RUSLE model Combination weighting method Driving factors Spatial heterogeneity
下载PDF
Structural Characteristics and Evolution of a Weighted Sino-US Container Shipping Network
4
作者 ZHANG Tiantian XI Daping +3 位作者 JIANG Wenping FENG Yuhao WANG Chuyuan HU Xini 《Chinese Geographical Science》 SCIE CSCD 2024年第5期810-828,共19页
This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constru... This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constructs a Sino-US container shipping network through voyage weighting and analyzes the essential structural characteristics to explore the network’s complex structural fea-tures.The network’s evolution is examined from three perspectives,namely,time,space,and event influence,aiming to comprehens-ively explore the network’s evolution mechanism.The results revealed that:1)the weighted Sino-US container shipping network exhib-its small-world and scale-free properties.Key hub ports in the United States include NEW YORK NY,SAVANNAH GA,LOS ANGELES CA,and OAKLAND CA,whereas SHANGHAI serving as the hub port in China.The geographical distribution of these hub ports is uneven.2)Concerning the evolution of the weighted Sino-US container shipping network,from a temporal perspective,the evolution of the regional structure of the entire Sino-US region and the Inland United States is in a stage of radiative expansion and de-velopment,with a need for further enhancement in competitiveness and development speed.The evolution of the regional structure of southern China and Europe is transitioning from the stage of radiative expansion and development to an advanced equilibrium stage.The shipping development in Northern China,the Western and Eastern United States,and Asia is undergoing significant changes but faces challenges of fierce competition and imbalances.From a spatial perspective,the rationality and effectiveness of the improved weighted Barrat-Barthelemy-Vespignani(BBV)model are confirmed through theoretical derivation.The applicability of the improved evolution model is verified by simulating the evolution of the weighted Sino-US container shipping network.From an event impact per-spective,the Corona Virus Disease 2019(COVID-19)pandemic has not fundamentally affected the spatial pattern of the weighted Sino-US container shipping network but has significantly impacted the network’s connectivity.The network lacks sufficient resilience and stability in emergency situations.3)Based on the analysis of the structural characteristics and evolution of the weighted Sino-US con-tainer shipping network,recommendations for network development are proposed from three aspects:emphasizing the development of hub ports,focusing on the balanced development of the network,and optimizing the layout of Chinese ports. 展开更多
关键词 container shipping network structure characteristics network evolution voyage weighting improved Barrat-Barthelemy-Vespignani(BBV)model
下载PDF
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
5
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(PV)modules weighted meaN oF vectOrs algorithm(INFO) renewable energy static PV models dynamic PV models solar energy
下载PDF
Research on the Assessment System of Computational Mechanics Courses Based on the TOPSIS Entropy Weight Model
6
作者 Huijun Ning Ruhuan Yu +1 位作者 Qianshu Wang Mingming Lin 《Journal of Contemporary Educational Research》 2024年第6期166-182,共17页
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu... This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality. 展开更多
关键词 TOPSIS entropy weight model Computational mechanics Course assessment and evaluation system Assessment model
下载PDF
Model-Free Ultra-High-Dimensional Feature Screening for Multi-Classified Response Data Based on Weighted Jensen-Shannon Divergence
7
作者 Qingqing Jiang Guangming Deng 《Open Journal of Statistics》 2023年第6期822-849,共28页
In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified fro... In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method. 展开更多
关键词 Ultra-High-Dimensional Multi-Classified weighted Jensen-Shannon Divergence model-FREE Feature Screening
下载PDF
Disassemblability Modeling Technology of Configurable Product Based on Disassembly Constraint Relation Weighted Design Structure Matrix(DSM) 被引量:3
8
作者 QIU Lemiao LIU Xiaojian +1 位作者 ZHANG Shuyou SUN Liangfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期511-519,共9页
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disa... The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized. 展开更多
关键词 disassemblability modeling disassembly entropy disassembling degree weighted DSM product configuration model
下载PDF
Change in Precipitation over the Tibetan Plateau Projected by Weighted CMIP6 Models 被引量:6
9
作者 Yin ZHAO Tianjun ZHOU +1 位作者 Wenxia ZHANG Jian LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1133-1150,共18页
Precipitation over the Tibetan Plateau(TP)is important to local and downstream ecosystems.Based on a weighting method considering model skill and independence,changes in the TP precipitation for near-term(2021-40),mid... Precipitation over the Tibetan Plateau(TP)is important to local and downstream ecosystems.Based on a weighting method considering model skill and independence,changes in the TP precipitation for near-term(2021-40),mid-term(2041-60)and long-term(2081-2100)under shared socio-economic pathways(SSP1-1.9,SSP1-2.6,SSP2-4.5,SSSP3-7.0,SSP5-8.5)are projected with 27 models from the latest Sixth Phase of the Couple Model Intercomparison Project.The annual mean precipitation is projected to increase by 7.4%-21.6%under five SSPs with a stronger change in the northern TP by the end of the 21st century relative to the present climatology.Changes in the TP precipitation at seasonal scales show a similar moistening trend to that of annual mean precipitation,except for the drying trend in winter precipitation along the southern edges of the TP.Weighting generally suggests a slightly stronger increase in TP precipitation with reduced model uncertainty compared to equally-weighted projections.The effect of weighting exhibits spatial and seasonal differences.Seasonally,weighting leads to a prevailing enhancement of increase in spring precipitation over the TP.Spatially,the influence of weighting is more remarkable over the northwestern TP regarding the annual,summer and autumn precipitation.Differences between weighted and original MMEs can give us more confidence in a stronger increase in precipitation over the TP,especially for the season of spring and the region of the northwestern TP,which requires additional attention in decision making. 展开更多
关键词 model weighting PRECIPITATION the Tibetan Plateau CMIP6 PROJECTION
下载PDF
Malicious Code Modeling and Analysis in Weighted Scale-Free Networks 被引量:2
10
作者 WANG Changguang WANG Fangwei +1 位作者 ZHANG Yangkai MA Jianfengi 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期51-54,共4页
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in... We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process. 展开更多
关键词 malicious code weighted scale-free networks propagation model
下载PDF
Modeling of Spatial Distributions of Farmland Density and Its Temporal Change Using Geographically Weighted Regression Model 被引量:2
11
作者 ZHANG Haitao GUO Long +3 位作者 CHEN Jiaying FU Peihong GU Jianli LIAO Guangyu 《Chinese Geographical Science》 SCIE CSCD 2014年第2期191-204,共14页
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199... This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors. 展开更多
关键词 spatial lag model spatial error model geographically weighted regression model global spatial autocorrelation local spatial aurocorrelation
下载PDF
Weighted De-Synchronization Based Resource Allocation in Wireless Networks
12
作者 Kimchheang Chhea Dara Ron Jung-Ryun Lee 《Computers, Materials & Continua》 SCIE EI 2023年第4期1815-1826,共12页
Considering the exponential growth of wireless devices with datastarving applications fused with artificial intelligence,the significance of wireless network scalability using distributed behavior and fairness among u... Considering the exponential growth of wireless devices with datastarving applications fused with artificial intelligence,the significance of wireless network scalability using distributed behavior and fairness among users is a crucial feature in guaranteeing reliable service to numerous users in the network environment.TheKuramoto model is described as nonlinear selfsustained phase oscillators spinning at varying intrinsic frequencies connected through the sine of their phase differences and displays a phase transition at a specific coupling strength,in which a mutual behavior is accomplished.In this work,we apply the Kuramoto model to achieve a weighted fair resource allocation in a wireless network,where each user has different quality of service(QoS)requirements.Because the original Kuramoto model is the synchronization model,we propose a new weighting parameter for representing requirement of each node resource and modify the Kuramoto model to achieveweighted fair resource allocation for users with different QoS requirements.The proposed modified Kuramoto model allocates all users the resource based on their weight among contending nodes in a distributed manner.We analyze the convergence condition for the proposed model,and the results reveal that the proposed algorithm achieves aweighted fair resource allocation and with potentially high convergence speed compared to previous algorithm. 展开更多
关键词 Kuramoto model fair resource allocation weighted de-synchronization
下载PDF
Impact of Accessibility on Housing Prices in Dalian City of China Based on a Geographically Weighted Regression Model 被引量:13
13
作者 YANG Jun BAO Yajun +2 位作者 ZHANG Yuqing LI Xueming GE Quansheng 《Chinese Geographical Science》 SCIE CSCD 2018年第3期505-515,共11页
This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source ... This paper studies the relationship between accessibility and housing prices in Dalian by using an improved geographically weighted regression model and house prices, traffic, remote sensing images, etc. Multi-source data improves the accuracy of the spatial differentiation that reflects the impact of traffic accessibility on house prices. The results are as follows: first, the average house price is 12 436 yuan(RMB)/m^2, and reveals a declining trend from coastal areas to inland areas. The exception was Guilin Street, which demonstrates a local peak of house prices that decreases from the center of the street to its periphery. Second, the accessibility value is 33 minutes on average, excluding northern and eastern fringe areas, which was over 50 minutes. Third, the significant spatial correlation coefficient between accessibility and house prices is 0.423, and the coefficient increases in the southeastern direction. The strongest impact of accessibility on house prices is in the southeastern coast, and can be seen in the Lehua, Yingke, and Hushan communities, while the weakest impact is in the northwestern fringe, and can be seen in the Yingchengzi, Xixiaomo, and Daheishi community areas. 展开更多
关键词 geographically weighted regression model accessibility house price Dalian City
下载PDF
Weighted Maximum Likelihood Technique for Logistic Regression
14
作者 Idriss Abdelmajid Idriss Weihu Cheng Yemane Hailu Fissuh 《Open Journal of Statistics》 2023年第6期803-821,共19页
In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for pr... In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared. 展开更多
关键词 Logistic Regression Clean model Robust Estimation Contaminated model weighted Maximum Likelihood Technique
下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
15
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 Minimum model error weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
下载PDF
Wavelet Density Estimation and Statistical Evidences Role for a GARCH Model in the Weighted Distribution 被引量:1
16
作者 Mohammad Abbaszadeh Mahdi Emadi 《Applied Mathematics》 2013年第2期410-416,共7页
We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper boun... We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine when model leads to a crisis and causes data to be lost. 展开更多
关键词 Density Estimation GARCH model weighted Distribution WAVELETS Statistical Evidences STRONGLY MIXING
下载PDF
Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: A case study at Gia Lai province, Vietnam 被引量:1
17
作者 Hoang Phan Hai Yen Binh Thai Pham +7 位作者 Tran Van Phong Duong Hai Ha Romulus Costache Hiep Van Le Huu Duy Nguyen Mahdis Amiri Nguyen Van Tao Indra Prakash 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期54-68,共15页
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl... The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters. 展开更多
关键词 Locally weighted learning Hybrid models Groundwater potential GIS VIETNAM
下载PDF
Association between Macroscopic-factors and Identified HIV/AIDS Cases among Injecting Drug Users: An Analysis Using Geographically Weighted Regression Model 被引量:1
18
作者 XING Jian Nan GUO Wei +5 位作者 QIAN Sha Sha DING Zheng Wei CHEN Fang Fang PENG Zhi Hang QIN Qian Qian WANG Lu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第4期311-318,共8页
Drug use (DU), particularly injecting drug use (IDU) has been the main route of transmission and spread of Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDSJ among injecting drug use... Drug use (DU), particularly injecting drug use (IDU) has been the main route of transmission and spread of Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDSJ among injecting drug users (IDUs)[1]. Previous studies have proven that needles or cottons sharing during drug injection were major risk factors for HIV/AIDS transmission at the personal level[z4]. Being a social behavioral issue, HIV/AIDS related risk factors should be far beyond the personal level. Therefore, studies on HIV/AIDS related risk factors should focus not only on the individual factors, but also on the association between HIV/AIDS cases and macroscopic-factors, such as economic status, transportation, health care services, etc[1]. The impact of the macroscopic-factors on HIV/AIDS status might be either positive or negative, which are potentially reflected in promoting, delaying or detecting HIV/AIDS epidemics. 展开更多
关键词 AIDS HIV An Analysis Using Geographically weighted Regression model
下载PDF
Applicability of Bevis Formula at Different Height Levels and Global Weighted Mean Temperature Model Based on Near-earth Atmospheric Temperature 被引量:15
19
作者 Yibin YAO Zhangyu SUN Chaoqian XU 《Journal of Geodesy and Geoinformation Science》 2020年第1期1-11,共11页
Weighted mean temperature(T m)is a critical parameter in Global Navigation Satellite System(GNSS)technology to retrieve precipitable water vapor(PWV).It is convenient to obtain high-precision T m estimates near surfac... Weighted mean temperature(T m)is a critical parameter in Global Navigation Satellite System(GNSS)technology to retrieve precipitable water vapor(PWV).It is convenient to obtain high-precision T m estimates near surface utilizing Bevis formula and surface temperature.However,some researches pointed out that the Bevis formula has large uncertainties in high-altitude regions.We investigate the applicability of the Bevis formula at different height levels and find that the Bevis formula has relatively high precision when the altitude is low,while with altitude increasing,the precision decreases gradually.To solve the problem,we analyze the relationship between T m and atmospheric temperature within the near-earth space range(the height range between 0~10 km)and find that they have a high correlation on a global scale.Accordingly,we build a global weighted mean temperature model based on near-earth atmospheric temperature.Validation results of the model show that this model can provide high-precision T m estimation at any height level in the near-earth space range. 展开更多
关键词 weighted mean TEMPERATURE Bevis FORMULA near-earth ATMOSPHERIC TEMPERATURE GLOBAL model
下载PDF
A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant 被引量:1
20
作者 Min Wang Li Sheng +1 位作者 Donghua Zhou Maoyin Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期719-727,共9页
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv... With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China. 展开更多
关键词 Abnormality monitoring continuous variables feature weighted mixed naive Bayes model(FWMNBM) two-valued variables thermal power plant
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部