Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted aver...Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.展开更多
In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy e...In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.展开更多
The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict l...The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.展开更多
This paper presents hybrid linguistic expressions and operations for the hybridlinguistic multiple criteria group decision making (MCGDM) issue withidentical and/or different single and interval linguistic term values...This paper presents hybrid linguistic expressions and operations for the hybridlinguistic multiple criteria group decision making (MCGDM) issue withidentical and/or different single and interval linguistic term values. First, wepropose a single and interval linguistic term multivalued set/element (SILTMS/SILTME) and develop a consistency measure of SILTMEs based on Shannonentropy to measure the consistency degree of single and interval linguistic termvalues in SILTME. Second, we converse SILTMS/SILTME into an uncertainlinguistic consistency set/element (ULCS/ULCE) in terms of the mean andconsistency measure of SILTMEs to reasonably perform operations betweendifferent information forms/sequence lengths in SILTMSs. Third, we definesome operations of ULCEs and the expected values and sorting rules ofULCEs. Fourth, we present the ULCE weighted mean and geometric operatorsand their characteristics. Finally, we develop a MCGDM model using theweighted mean operation of the two operators and apply it in the mine safetyassessment.展开更多
文摘Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.
文摘In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.
文摘The existing concepts of picture fuzzy sets(PFS),spherical fuzzy sets(SFSs),T-spherical fuzzy sets(T-SFSs)and neutrosophic sets(NSs)have numerous applications in decision-making problems,but they have various strict limitations for their satisfaction,dissatisfaction,abstain or refusal grades.To relax these strict constraints,we introduce the concept of spherical linearDiophantine fuzzy sets(SLDFSs)with the inclusion of reference or control parameters.A SLDFSwith parameterizations process is very helpful formodeling uncertainties in themulti-criteria decisionmaking(MCDM)process.SLDFSs can classify a physical systemwith the help of reference parameters.We discuss various real-life applications of SLDFSs towards digital image processing,network systems,vote casting,electrical engineering,medication,and selection of optimal choice.We show some drawbacks of operations of picture fuzzy sets and their corresponding aggregation operators.Some new operations on picture fuzzy sets are also introduced.Some fundamental operations on SLDFSs and different types of score functions of spherical linear Diophantine fuzzy numbers(SLDFNs)are proposed.New aggregation operators named spherical linear Diophantine fuzzy weighted geometric aggregation(SLDFWGA)and spherical linear Diophantine fuzzy weighted average aggregation(SLDFWAA)operators are developed for a robust MCDM approach.An application of the proposed methodology with SLDF information is illustrated.The comparison analysis of the final ranking is also given to demonstrate the validity,feasibility,and efficiency of the proposed MCDM approach.
文摘This paper presents hybrid linguistic expressions and operations for the hybridlinguistic multiple criteria group decision making (MCGDM) issue withidentical and/or different single and interval linguistic term values. First, wepropose a single and interval linguistic term multivalued set/element (SILTMS/SILTME) and develop a consistency measure of SILTMEs based on Shannonentropy to measure the consistency degree of single and interval linguistic termvalues in SILTME. Second, we converse SILTMS/SILTME into an uncertainlinguistic consistency set/element (ULCS/ULCE) in terms of the mean andconsistency measure of SILTMEs to reasonably perform operations betweendifferent information forms/sequence lengths in SILTMSs. Third, we definesome operations of ULCEs and the expected values and sorting rules ofULCEs. Fourth, we present the ULCE weighted mean and geometric operatorsand their characteristics. Finally, we develop a MCGDM model using theweighted mean operation of the two operators and apply it in the mine safetyassessment.