For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain som...On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain some characterizations of functions in A^P(Ω, dvs) in terms of a class of linear operators D^αB. Making use of these characterizations, we extend A^P(Ω,dvs) to the weighted Bergman spaces Aα^p,B(Ω,dvs) in a very natural way for 1 〈 p 〈 4-∞ and any real number s, that is, -∞ 〈 s 〈 +∞. This unified treatment covers some classical Bergman spaces, Besov spaces and Bloch spaces. Meanwhile, the boundedness of Bergman projection operators on Aα^P,β(Ω, dvs) and the dual of Aα^P,B(Ω, dvs) are given.展开更多
In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in...In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.展开更多
In this article, we borrow the idea of using Schur's test to characterize the compactness of composition operators on the weighted Bergman spaces in a bounded symmetricdomain Ω and verify that Cφ is compact on Lqa...In this article, we borrow the idea of using Schur's test to characterize the compactness of composition operators on the weighted Bergman spaces in a bounded symmetricdomain Ω and verify that Cφ is compact on Lqa(Ω,dvβ)if and only if K(φ(z),φ(z))/K(z,z)→0 as z→ Ω under a mild condition,where K(z,w)is the Bergman kernel.展开更多
In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball i...In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball in terms of these counting functions. The sufficient condition for such operators to be bounded or compact is also given.展开更多
In this paper we mainly consider little Hankel operators with squareintegrable symbols on the weighted Bergman spaces of the unit ball.We obtain that Schatten class of little Hankel operators is equivalent to Schatten...In this paper we mainly consider little Hankel operators with squareintegrable symbols on the weighted Bergman spaces of the unit ball.We obtain that Schatten class of little Hankel operators is equivalent to Schatten class of positive Toeplitz operators under the conditions that SMO(f) ∈ L p/2 (B n,dλ) and 2 ≤ p ∞,which is very important to research the relation between Toeplitz operators and little Hankel operators.展开更多
In this paper, we analyze a class of bounded radial operators on the weighted Bergman space A2α(Bn, d Vα), we get that these kinds of operators are diagonal with respect to the standard orthonomal basis. We also inv...In this paper, we analyze a class of bounded radial operators on the weighted Bergman space A2α(Bn, d Vα), we get that these kinds of operators are diagonal with respect to the standard orthonomal basis. We also investigate the connection between compactness of operators and the boundary behaviour of the corresponding Berezin transform. We further study a special class of radial operators, i.e., Toeplitz operators with a radial L1 symbol.展开更多
Given a doubling weightωon the unit disk D,let A_(ω)^(p) be the space of all the holomorphic functions f,where∥f∥A_(ω)^(p):=(∫_(D)|f(z)|_(p)ω(z)dA(z))^(1/p)<∞.We completely characterize the topological conn...Given a doubling weightωon the unit disk D,let A_(ω)^(p) be the space of all the holomorphic functions f,where∥f∥A_(ω)^(p):=(∫_(D)|f(z)|_(p)ω(z)dA(z))^(1/p)<∞.We completely characterize the topological connectedness of the set of composition operators on A_(ω)^(p).As an application,we construct an interesting example which reveals that two composition operators on A_(α)^(p) in the same path component may fail to have a compact difference and give a negative answer to the Shapiro-Sundberg question in the(standard)weighted Bergman space.In addition,we completely describe the central compactness of any finite linear combinations of composition operators on A_(ω)^(p) in three terms:a Julia-Carathéodory-type function-theoretic characterization,a power-type characterization,and a Carleson-type measure-theoretic characterization.展开更多
In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and es...In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.展开更多
We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the u...We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.展开更多
In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the...In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the unit ball and estimate the essential norms of the weighted composition operators.展开更多
In this paper, we express the essential norms of composition operators between weighted Bergman spaces of the unit disc in terms of the generalized Nevanlinna counting function.
Recently,a class of Type Ⅱ factors has been constructed,arising from holomorphic coverings of bounded planar domains.Those operators in Type Ⅱ factors act on the Bergman space.In this paper,we develop new techniques...Recently,a class of Type Ⅱ factors has been constructed,arising from holomorphic coverings of bounded planar domains.Those operators in Type Ⅱ factors act on the Bergman space.In this paper,we develop new techniques to generalize those results to the case of the weighted Bergman spaces.In addition,a class of group-like von Neumann algebras are constructed,which are shown to be-isomorphic to the group von Neumann algebras.展开更多
This paper gives a note on weighted composition operators on the weighted Bergman space, which shows that for a fixed composition symbol, the weighted composition operators are bounded on the weighted Bergman space on...This paper gives a note on weighted composition operators on the weighted Bergman space, which shows that for a fixed composition symbol, the weighted composition operators are bounded on the weighted Bergman space only with bounded weighted symbols if and only if the composition symbol is a finite Blaschke product.展开更多
Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weight...Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weighted Bergman-Orlicz spaceA^ψω(D,dAa)is||f||ω^ψ=∫Dψ|F(z)|ω(z)dA^(z) 〈 ∞,where q; is a strictly convex Orlicz function that satisfies other technical hypotheses. Let G be a measurable subset of D, we say G satisfies the reverse Carleson condition for A^ψω (D, dAa) if there exists a positive constant C such that ∫Gψ(f(z))ω(z)dAa(z)≥C∫Dψ(|f(z)dAa(z).for all f ∈ .A^ψω (D,dAa). Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all f∈Aψ^ω (D,dAa),∫Dψ(|f(z)|)dμ(z)≤M∫Dψ(|f(z)|)ω(z)dAa(a).In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space Aω^ψ(D,dAa).We present conditions on the set G such that'the reverse Carleson condition'holds. "Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.展开更多
In this paper, for an invariant subspace I of the weighted Bergman space, the weighted root operator is defined. We study the weighted root operator and obtain its fundamental properties when the invariant subspace I ...In this paper, for an invariant subspace I of the weighted Bergman space, the weighted root operator is defined. We study the weighted root operator and obtain its fundamental properties when the invariant subspace I has finite index. Furthermore, we give some examples of the root operator and estimate ranks of the operators.展开更多
Forα〉1,let dvαdenote the weighted Lebesgue measure on the bidisk andμa complex measure satisfying some Carleson-type conditions.In this paper,we show a sufcient and necessary condition for the Toeplitz operatorT...Forα〉1,let dvαdenote the weighted Lebesgue measure on the bidisk andμa complex measure satisfying some Carleson-type conditions.In this paper,we show a sufcient and necessary condition for the Toeplitz operatorTαˉμto be bounded or compact on weighted Bergman spaceL1a(dvα).展开更多
This paper characterizes the boundedness and compactness of weighted composition operators between Bers-type space (or little Bers-type space) and Bergman space. Some estimates for the norm of weighted composition o...This paper characterizes the boundedness and compactness of weighted composition operators between Bers-type space (or little Bers-type space) and Bergman space. Some estimates for the norm of weighted composition operators between those spaces are obtained.展开更多
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
基金the NNSF of China(10571164)the SRFDP of Higher Education(20050358052)
文摘On bounded symmetric domain Ω of C^n, we investigate the properties of functions in weighted Bergman spaces A^P(Ω,dvs) for 0 〈 p ≤ +∞ and -1 〈 s 〈 4-∞. Based on the estimate of Bergman kernel, we obtain some characterizations of functions in A^P(Ω, dvs) in terms of a class of linear operators D^αB. Making use of these characterizations, we extend A^P(Ω,dvs) to the weighted Bergman spaces Aα^p,B(Ω,dvs) in a very natural way for 1 〈 p 〈 4-∞ and any real number s, that is, -∞ 〈 s 〈 +∞. This unified treatment covers some classical Bergman spaces, Besov spaces and Bloch spaces. Meanwhile, the boundedness of Bergman projection operators on Aα^P,β(Ω, dvs) and the dual of Aα^P,B(Ω, dvs) are given.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0093827)
文摘In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.
基金Supported by the National Natural Science Foundation of China (10771064)Natural Science Foundation of Zhejiang Province (Y7080197, Y6090036, Y6100219)+1 种基金Foundation of Creative Group in Colleges and Universities of Zhejiang Province (T200924)Foundation of Department of Education of Zhejiang province (20070482)
文摘In this article, we borrow the idea of using Schur's test to characterize the compactness of composition operators on the weighted Bergman spaces in a bounded symmetricdomain Ω and verify that Cφ is compact on Lqa(Ω,dvβ)if and only if K(φ(z),φ(z))/K(z,z)→0 as z→ Ω under a mild condition,where K(z,w)is the Bergman kernel.
基金supported by the National Natural Science Foundation of China (11171255,11101279)the Natural Science Foundation of Shanghai (13ZR1444100)
文摘In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball in terms of these counting functions. The sufficient condition for such operators to be bounded or compact is also given.
文摘In this paper we mainly consider little Hankel operators with squareintegrable symbols on the weighted Bergman spaces of the unit ball.We obtain that Schatten class of little Hankel operators is equivalent to Schatten class of positive Toeplitz operators under the conditions that SMO(f) ∈ L p/2 (B n,dλ) and 2 ≤ p ∞,which is very important to research the relation between Toeplitz operators and little Hankel operators.
文摘In this paper, we analyze a class of bounded radial operators on the weighted Bergman space A2α(Bn, d Vα), we get that these kinds of operators are diagonal with respect to the standard orthonomal basis. We also investigate the connection between compactness of operators and the boundary behaviour of the corresponding Berezin transform. We further study a special class of radial operators, i.e., Toeplitz operators with a radial L1 symbol.
文摘1 Introduction The Bergman space Aα^2 is the space of analytic functions on a plane domain D which are square integrable with respect to the measure.
基金supported by National Natural Science Foundation of China (Grant Nos. 12101467 and 12171373)。
文摘Given a doubling weightωon the unit disk D,let A_(ω)^(p) be the space of all the holomorphic functions f,where∥f∥A_(ω)^(p):=(∫_(D)|f(z)|_(p)ω(z)dA(z))^(1/p)<∞.We completely characterize the topological connectedness of the set of composition operators on A_(ω)^(p).As an application,we construct an interesting example which reveals that two composition operators on A_(α)^(p) in the same path component may fail to have a compact difference and give a negative answer to the Shapiro-Sundberg question in the(standard)weighted Bergman space.In addition,we completely describe the central compactness of any finite linear combinations of composition operators on A_(ω)^(p) in three terms:a Julia-Carathéodory-type function-theoretic characterization,a power-type characterization,and a Carleson-type measure-theoretic characterization.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10671028, 10971020)
文摘In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.
文摘We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10971153, 10671141)
文摘In this paper, we characterize the boundedness and compactness of the weighted composi- tion operators from the weighted Bergman space to the standard mixed-norm space or the mixed-norm space with normal weight on the unit ball and estimate the essential norms of the weighted composition operators.
基金Supported by National Natural Science Foundation of China(Grant Nos.11071230 and 11171318)Natural Science Foundation of Anhui Province(Grant No.090416233)
文摘In this paper, we express the essential norms of composition operators between weighted Bergman spaces of the unit disc in terms of the generalized Nevanlinna counting function.
基金supported by National Natural Science Foundation of China (Grant No.11001078)Shanghai Municipal Education Commission and Shanghai Education Development Foundation (GrantNo. 11CG30)
文摘Recently,a class of Type Ⅱ factors has been constructed,arising from holomorphic coverings of bounded planar domains.Those operators in Type Ⅱ factors act on the Bergman space.In this paper,we develop new techniques to generalize those results to the case of the weighted Bergman spaces.In addition,a class of group-like von Neumann algebras are constructed,which are shown to be-isomorphic to the group von Neumann algebras.
基金Supported by NSFC(Grant Nos.11201274,11171245,11471189)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This paper gives a note on weighted composition operators on the weighted Bergman space, which shows that for a fixed composition symbol, the weighted composition operators are bounded on the weighted Bergman space only with bounded weighted symbols if and only if the composition symbol is a finite Blaschke product.
文摘Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weighted Bergman-Orlicz spaceA^ψω(D,dAa)is||f||ω^ψ=∫Dψ|F(z)|ω(z)dA^(z) 〈 ∞,where q; is a strictly convex Orlicz function that satisfies other technical hypotheses. Let G be a measurable subset of D, we say G satisfies the reverse Carleson condition for A^ψω (D, dAa) if there exists a positive constant C such that ∫Gψ(f(z))ω(z)dAa(z)≥C∫Dψ(|f(z)dAa(z).for all f ∈ .A^ψω (D,dAa). Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all f∈Aψ^ω (D,dAa),∫Dψ(|f(z)|)dμ(z)≤M∫Dψ(|f(z)|)ω(z)dAa(a).In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space Aω^ψ(D,dAa).We present conditions on the set G such that'the reverse Carleson condition'holds. "Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10671028 10971020)
文摘In this paper, for an invariant subspace I of the weighted Bergman space, the weighted root operator is defined. We study the weighted root operator and obtain its fundamental properties when the invariant subspace I has finite index. Furthermore, we give some examples of the root operator and estimate ranks of the operators.
基金Supported by National Nature Science Foundation of China(Grant Nos.10971195 and 11271332)Natural Science Foundation of Zhejiang Province(Grant No.LQ12A01004)
文摘Forα〉1,let dvαdenote the weighted Lebesgue measure on the bidisk andμa complex measure satisfying some Carleson-type conditions.In this paper,we show a sufcient and necessary condition for the Toeplitz operatorTαˉμto be bounded or compact on weighted Bergman spaceL1a(dvα).
基金Supported by the NNSF of China(10471039)the Natural Science Foundation of Zhejiang Province(M103 104)the Natural Science Foundation of Huzhou City(2005YZ02).
文摘This paper characterizes the boundedness and compactness of weighted composition operators between Bers-type space (or little Bers-type space) and Bergman space. Some estimates for the norm of weighted composition operators between those spaces are obtained.