期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm
1
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(KNN) disc space variation(DSV)
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
2
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square method Robust Least Square method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-nearest neighbor and Mean imputation
下载PDF
EDGEWORTH EXPANSION FOR NEAREST NEIGHBOR- KERNEL ESTIMATE AND RANDOM WEIGHTING APPROXIMATION OF CONDITIONAL DENSITY
3
作者 Yu ZhaopingInstitute of Electronic Technique,Zhengzhou450 0 0 4 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2000年第2期167-172,共6页
In this paper,Edgeworth expansion for the nearest neighbor\|kernel estimate and random weighting approximation of conditional density are given and the consistency and convergence rate are proved.
关键词 Random weighting method Edgeworth expansion nearest neighbor\|kernel estimate.
全文增补中
改进的邻近加权合成过采样技术
4
作者 邢胜 王晓兰 +3 位作者 沈家星 朱美玲 曹永青 何玉林 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第6期748-755,共8页
针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(i... 针对邻近加权合成过采样技术(proximity weighted synthetic oversampling technique,ProWSyn)在合成样例时未删除噪声样例,且当平滑因子在[0,1]区间取值时,权重比例难以覆盖整个搜索空间的缺陷,提出一种改进的邻近加权合成过采样技术(improved proximity weighted synthetic oversampling technique,IProWSyn).改变权重的计算策略,引入底数为(0,1]的普通指数函数,通过动态改变底数令权重覆盖更大范围的搜索空间,进而找到更优的权重.将IProWSyn、ASN-SMOTE和ProWSyn应用在非平衡数据集ada、ecoli1、glass1、haberman、Pima和yeast1上,再使用k近邻(k-nearest neighbors,kNN)分类器和神经网络分类器检验方法的有效性.实验结果表明,在多数数据集上IProWSyn的F1、几何平均值(geometric mean,G-mean)和曲线下面积(area under curve,AUC)指标性能都高于其他过采样方法.IProWSyn过采样技术在这些数据集的综合分类效果更好,有更好的泛化表现. 展开更多
关键词 人工智能 非平衡数据 邻近加权合成过采样技术 过采样方法 K近邻分类器 神经网络
下载PDF
Identifying G-protein Coupled Receptors Using Weighted Levenshtein Distance and Nearest Neighbor Method 被引量:1
5
作者 Jian-Hua Xu 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2005年第4期252-257,共6页
G-protein coupled receptors (GPCRs) are a class of seven-helix transmembrane proteins that have been used in bioinformatics as the targets to facilitate drug discovery for human diseases. Although thousands of GPCR ... G-protein coupled receptors (GPCRs) are a class of seven-helix transmembrane proteins that have been used in bioinformatics as the targets to facilitate drug discovery for human diseases. Although thousands of GPCR sequences have been collected, the ligand specificity of many GPCRs is still unknown and only one crystal structure of the rhodopsin-like family has been solved. Therefore, identifying GPCR types only from sequence data has become an important research issue. In this study, a novel technique for identifying GPCR types based on the weighted Levenshtein distance between two receptor sequences and the nearest neighbor method (NNM) is introduced, which can deal with receptor sequences with different lengths directly. In our experiments for classifying four classes (acetylcholine, adrenoceptor, dopamine, and serotonin) of the rhodopsin-like family of GPCRs, the error rates from the leave-one-out procedure and the leave-half-out procedure were 0.62% and 1.24%, respectively. These results are prior to those of the covariant discriminant algorithm, the support vector machine method, and the NNM with Euclidean distance. 展开更多
关键词 GPCR weighted Levenshtein distance nearest neighbor method
原文传递
k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1
6
作者 QIN GENGSHENG (Department of Mathematics,Sichuan University, Chengdu 610064). 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est... Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). 展开更多
关键词 Partial linear model censored data class K method k-nearest neighbor weights
下载PDF
Precipitation Retrieval from Himawari-8 Satellite Infrared Data Based on Dictionary Learning Method and Regular Term Constraint 被引量:2
7
作者 Wang Gen Ding Conghui Liu Huilan 《Meteorological and Environmental Research》 CAS 2019年第3期61-65,68,共6页
In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera... In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure. 展开更多
关键词 Himawari-8(H8) RETRIEVAL of PRECIPITATION k-nearest neighbor (KNN) REGULAR TERM constraints DICTIONARY method Bayesian model average (BMA)
下载PDF
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
8
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
下载PDF
A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area 被引量:1
9
作者 Donald Gagliasso Susan Hummel Hailemariam Temesgen 《Open Journal of Forestry》 2014年第1期42-48,共7页
Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate es... Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future management plans. The goal of this study was to compare various imputation methods to predict forest biomass and basal area, at a project planning scale (a combination of ground inventory plots, light detection and ranging (LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate based on the ranking of RMSE and bias. 展开更多
关键词 Gradient Nearest neighbor MOST Similar neighbor k-nearest neighbor Random FOREST GEOGRAPHIC weighted Regression Biomass LiDAR
下载PDF
混合滤波与改进贝叶斯相融合的室内可见光指纹定位方法 被引量:1
10
作者 顾亚雄 钟文 《测绘通报》 CSCD 北大核心 2023年第6期104-109,128,共7页
针对室内环境光、噪声等因素会对移动终端接收到的可见光信号强度产生干扰从而导致定位精度不高的问题,本文提出了一种将高斯拟合+卡尔曼滤波(GF-KF)与改进贝叶斯(Improved-Bayes)融合的室内可见光指纹定位方法。首先通过GF-KF算法修正... 针对室内环境光、噪声等因素会对移动终端接收到的可见光信号强度产生干扰从而导致定位精度不高的问题,本文提出了一种将高斯拟合+卡尔曼滤波(GF-KF)与改进贝叶斯(Improved-Bayes)融合的室内可见光指纹定位方法。首先通过GF-KF算法修正采集到的接收信号强度(RSS)作为指纹库数据,再通过对加权K近邻法的权值系数改造后与贝叶斯算法融合的方法将待测点与指纹点RSS数据进行匹配,计算分析出位置。试验结果表明,在该算法模型下,平均定位误差为1.42 cm,92.83%的测试点定位误差不大于2 cm,相较于卷积神经网络算法、加权K近邻算法和支持向量机法精度更高,稳健性更强。 展开更多
关键词 光通信 可见光指纹定位 高斯拟合 卡尔曼滤波法 加权K近邻法 贝叶斯算法
下载PDF
随机森林法在母型船选型中的应用研究 被引量:1
11
作者 张明霞 赵桐鸣 王思沂 《应用科技》 CAS 2023年第5期126-132,174,共8页
船型技术经济论证中首先需要选择合适的母型船作为初始方案,在此基础上进行船型变换及优选。如何快速地从大量实船方案中筛选出最接近设计方案的船型,是技术经济论证工作智能化不可回避的问题。文中以油轮为例,收集了617艘船舶主尺度等... 船型技术经济论证中首先需要选择合适的母型船作为初始方案,在此基础上进行船型变换及优选。如何快速地从大量实船方案中筛选出最接近设计方案的船型,是技术经济论证工作智能化不可回避的问题。文中以油轮为例,收集了617艘船舶主尺度等相关要素,建立实船案例库;采用随机森林加权算法获取特征属性的权重,检索出与目标方案最近的方案作为母型船;为验证有效性,与普通权重法、熵权法及层次分析法–熵权法的组合权重法进行比较。结果表明,基于随机森林加权的最近邻算法平均准确率最大值高1%~2%,平均宏观f1分数最大值高1%~6%,检索出的方案与目标方案相似度最高。随机森林法的准确度高,实现了母型船案例检索的智能化与自动化。 展开更多
关键词 母型船检索 智能化 知识工程 基于案例推理 K最近邻算法 随机森林算法 组合赋权法 分类性能评估
下载PDF
基于熵权法的医院供应商综合评价方法
12
作者 诸明 周奕 王杉 《微型电脑应用》 2023年第12期195-198,共4页
随着中国城市医院的医技水平不断提高,对医院供应商评估的需求日益增加。为了解决医院供应商评估难度大、准确率低的问题,提出了一种基于熵权法的医院供应商综合评价方法。采用近邻聚类方法对医院的供应商进行聚类,获得医院供应商的典... 随着中国城市医院的医技水平不断提高,对医院供应商评估的需求日益增加。为了解决医院供应商评估难度大、准确率低的问题,提出了一种基于熵权法的医院供应商综合评价方法。采用近邻聚类方法对医院的供应商进行聚类,获得医院供应商的典型特征。建立医院供应商的评估指标集,并采用熵权法进行评估指标权重的调整,进行医院供应商综合评估。在某省的城市医院应用该方法,其评估的准确性达98.3%,验证了该评估方法的有效性。 展开更多
关键词 城市医院 熵权法 供应商 评价方法 近邻聚类
下载PDF
Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant 被引量:4
13
作者 Minsoo KIM Yejin KIM +2 位作者 Hyosoo KIM Wenhua PIAO Changwon KIM 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第2期299-310,共12页
The k-nearest neighbor (k-NN) method was evaluated to predict the influent flow rate and four water qualities, namely chemical oxygen demand (COD), suspended solid (SS), total nitrogen (T-N) and total phosphor... The k-nearest neighbor (k-NN) method was evaluated to predict the influent flow rate and four water qualities, namely chemical oxygen demand (COD), suspended solid (SS), total nitrogen (T-N) and total phosphorus (T-P) at a wastewater treatment plant (WWTP). The search range and approach for determining the number of nearest neighbors (NNs) under dry and wet weather conditions were initially optimized based on the root mean square error (RMSE). The optimum search range for considering data size was one year. The square root-based (SR) approach was superior to the distance factor-based (DF) approach in determining the appropriate number of NNs. However, the results for both approaches varied slightly depending on the water quality and the weather conditions. The influent flow rate was accurately predicted within one standard deviation of measured values. Influent water qualities were well predicted with the mean absolute percentage error (MAPE) under both wet and dry weather conditions. For the seven-day prediction, the difference in predictive accuracy was less than 5% in dry weather conditions and slightly worse in wet weather conditions. Overall, the k-NN method was verified to be useful for predicting WWTP influent characteristics. 展开更多
关键词 influent wastewater prediction data-drivenmodel k-nearest neighbor method (k-NN)
原文传递
基于混沌时间序列局域法的短时交通流预测 被引量:18
14
作者 廖荣华 兰时勇 刘正熙 《计算机技术与发展》 2015年第1期1-5,共5页
为提高城市短时交通流预测精度,将混沌时间序列分析应用于城市短时交通流数据,研究混沌时间序列局域预测法中的加权零阶局域法和加权一阶局域法。针对局域预测法在选取邻近相点时采用的欧氏距离和向量夹角两种方法只能片面反映邻近点的... 为提高城市短时交通流预测精度,将混沌时间序列分析应用于城市短时交通流数据,研究混沌时间序列局域预测法中的加权零阶局域法和加权一阶局域法。针对局域预测法在选取邻近相点时采用的欧氏距离和向量夹角两种方法只能片面反映邻近点的特点的问题,提出一种改进邻近相点选取的方法,综合相点相似程度和相点距离来选取邻近相点。再将原有方法和改进后的方法应用于北京市短时交通流预测中。结果表明,混沌时间序列局域法能适用于短时交通流预测,并且改进后的方法比原有方法具有更高的预测精度。 展开更多
关键词 交通流预测 混沌时间序列 邻近点 加权零阶局域法 加权一阶局域法
下载PDF
基于核距离加权的k-最近邻红外小目标检测 被引量:2
15
作者 陈晓斯 程正东 +2 位作者 樊祥 朱斌 丁磊 《激光与红外》 CAS CSCD 北大核心 2014年第9期1060-1064,共5页
城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中... 城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中进行分类,再对各近邻进行距离加权,遍历图像后得到预测结果。实验结果证明了该方法在抑制背景、增强目标方面都有较好的效果。 展开更多
关键词 城市防空 红外小目标检测 K-最近邻 核方法 距离加权
下载PDF
用于支持向量机拒识区域的加权k近邻法 被引量:1
16
作者 李仁兵 李艾华 +1 位作者 白向峰 赵静茹 《计算机工程》 CAS CSCD 北大核心 2010年第16期164-165,168,共3页
为解决1-v-r和1-v-1支持向量机中存在的拒识区域问题,提出一种加权k近邻法。该方法计算落入拒识区域中的样本,即拒识样本到所有训练样本的距离,选择最近的k个样本为拒识样本的类别投票,并根据距离大小进行加权,得票多的类即拒识样本的... 为解决1-v-r和1-v-1支持向量机中存在的拒识区域问题,提出一种加权k近邻法。该方法计算落入拒识区域中的样本,即拒识样本到所有训练样本的距离,选择最近的k个样本为拒识样本的类别投票,并根据距离大小进行加权,得票多的类即拒识样本的所属类。实验结果表明,加权k近邻法实现了零拒识,提高了传统多分类支持向量机的分类性能。 展开更多
关键词 加权k近邻法 拒识区域 多分类 支持向量机
下载PDF
基于K近邻的蛋白质功能的预测方法 被引量:2
17
作者 倪青山 王正志 +1 位作者 黎刚果 孟祥林 《生物医学工程研究》 2009年第2期87-90,共4页
蛋白质功能预测是后基因组时代研究的重要问题之一。利用蛋白质相互作用网络,提出了一种基于K近邻的蛋白质功能的注释方法,该方法首先计算待注释的蛋白质与所有已知功能的蛋白质间的注释环境相似度,选择其中最相似的K个蛋白质,将该K个... 蛋白质功能预测是后基因组时代研究的重要问题之一。利用蛋白质相互作用网络,提出了一种基于K近邻的蛋白质功能的注释方法,该方法首先计算待注释的蛋白质与所有已知功能的蛋白质间的注释环境相似度,选择其中最相似的K个蛋白质,将该K个蛋白质的功能注释进行加权平均,作为待注释的蛋白质最终的功能注释。在构建的芽殖酵母的两组大规模相互作用数据集上的测试表明,该方法能够有效的对蛋白质功能进行预测,在蛋白质功能预测性能上优于现有的一些方法。 展开更多
关键词 蛋白质相互作用 蛋白质功能预测 K近邻算法 相似性 加权方法
下载PDF
基于ArcGIS的供水水压插值法比较分析 被引量:3
18
作者 汪瑞清 《净水技术》 CAS 2016年第4期77-80,120,共5页
文中介绍城市供水管网是非常复杂的多维度非线性系统,而实时压力监测又是目前最主要的供水调度参照。随着GIS在供水领域的普及,将实时数据和空间数据结合应用正逐渐成为一种趋势。该文研究了ArcGIS空间领域中几种常见的插值算法:反距离... 文中介绍城市供水管网是非常复杂的多维度非线性系统,而实时压力监测又是目前最主要的供水调度参照。随着GIS在供水领域的普及,将实时数据和空间数据结合应用正逐渐成为一种趋势。该文研究了ArcGIS空间领域中几种常见的插值算法:反距离权重法、自然邻点法、样条函数法、克里金法,在生成供水水压面的过程中对四种插值算法进行了比较。在实时监测点达到一定数量时,利用管网水压和地理空间建立低维度模型,避免了水力模型迭代计算时的长耗时,对供水调度监测部门在发生供水管网事故时快速确定压力突变区域有着十分重要的意义。 展开更多
关键词 供水水压 等压面 供水调度 反距离权重法 自然邻点法 样条函数法 克里金法
下载PDF
基于场强地图的室内定位技术研究 被引量:2
19
作者 王韦刚 周蓉 +1 位作者 张云伟 李韬 《邮电设计技术》 2020年第4期27-34,共8页
室内定位技术的发展,要求能提供快速建立、适应性强、成本低的定位系统。基于场强地图的室内定位技术,能大幅减少离线测试工作量。针对当前离线阶段存在预测场强不准的问题,提出了追踪共轭梯度法,能快速建立场强地图。在线阶段提出了加... 室内定位技术的发展,要求能提供快速建立、适应性强、成本低的定位系统。基于场强地图的室内定位技术,能大幅减少离线测试工作量。针对当前离线阶段存在预测场强不准的问题,提出了追踪共轭梯度法,能快速建立场强地图。在线阶段提出了加权差分坐标K最近邻法,结果表明该方法与传统方法相比,能使离线阶段的反演模型数据优化,使得在线阶段的定位匹配误差进一步减小,获得更高的定位精度。 展开更多
关键词 室内定位 反演模式 场强地图 追踪共轭梯度法 加权差分坐标K最近邻法
下载PDF
ZigBee通信节点在室内定位中的应用
20
作者 佟为明 李方 +1 位作者 王胤燊 王铁成 《低压电器》 2012年第15期58-61,共4页
分析了几种主流无线定位技术的优缺点。提出了一种基于位置指纹法的定位原理,应用于ZigBee网络平台的室内无线定位方法。完成了ZigBee通信节点的软硬件设计,并在搭建的试验平台上对该方法进行了验证。试验结果表明,在不需要专用硬件设... 分析了几种主流无线定位技术的优缺点。提出了一种基于位置指纹法的定位原理,应用于ZigBee网络平台的室内无线定位方法。完成了ZigBee通信节点的软硬件设计,并在搭建的试验平台上对该方法进行了验证。试验结果表明,在不需要专用硬件设备的条件下,采用加权k近邻法,即可获得较好的定位效果。实际应用中,可采用增加网络接入设备和近邻数量的方法提高定位精度。 展开更多
关键词 ZIGBEE 室内定位 位置指纹法 加权k近邻法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部