To enhance the performance of the prediction intervals (PIs), a novel very short-term probabilistic prediction method for wind speed via nonlinear quantile regression (NQR) based on adaptive least absolute shrinkage a...To enhance the performance of the prediction intervals (PIs), a novel very short-term probabilistic prediction method for wind speed via nonlinear quantile regression (NQR) based on adaptive least absolute shrinkage and selection operator (ALASSO) and integrated criterion (IC) is proposed. The ALASSO method is studied for shrinkage of output weights and selection of variables. Furthermore, for the better performance of PIs, composite weighted linear programming (CWLP) is proposed to modify the conventional linear programming cost function of quantile regression (QR), by combining it with Bayesian information criterion (BIC) as an IC to optimize the coefficients of PIs. Then, the multiple fold cross model (MFCM) is utilized to improve the PIs performance. Multistep probabilistic prediction of 15-minute wind speed is performed based on the real wind farm data from the northeast of China. The effectiveness of the proposed approach is validated through the performances' comparisons with conventional methods.展开更多
基金the National Key R&D Program of China(Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption,2018YFB0904200)eponymous Complement S&T Program of State Grid Corporation of China(SGLNDKOOKJJS1800266)。
文摘To enhance the performance of the prediction intervals (PIs), a novel very short-term probabilistic prediction method for wind speed via nonlinear quantile regression (NQR) based on adaptive least absolute shrinkage and selection operator (ALASSO) and integrated criterion (IC) is proposed. The ALASSO method is studied for shrinkage of output weights and selection of variables. Furthermore, for the better performance of PIs, composite weighted linear programming (CWLP) is proposed to modify the conventional linear programming cost function of quantile regression (QR), by combining it with Bayesian information criterion (BIC) as an IC to optimize the coefficients of PIs. Then, the multiple fold cross model (MFCM) is utilized to improve the PIs performance. Multistep probabilistic prediction of 15-minute wind speed is performed based on the real wind farm data from the northeast of China. The effectiveness of the proposed approach is validated through the performances' comparisons with conventional methods.