Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicato...Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicators of PD,making voice analysis a valuable tool for early detection and intervention.This study aims to assess and detect the severity of PD through voice analysis using the mobile device voice recordings dataset.The dataset consisted of recordings from PD patients at different stages of the disease and healthy control subjects.A novel approach was employed,incorporating a voice activity detection algorithm for speech segmentation and the wavelet scattering transform for feature extraction.A Bayesian optimization technique is used to fine-tune the hyperparameters of seven commonly used classifiers and optimize the performance of machine learning classifiers for PD severity detection.AdaBoost and K-nearest neighbor consistently demonstrated superior performance across various evaluation metrics among the classifiers.Furthermore,a weighted majority voting(WMV)technique is implemented,leveraging the predictions of multiple models to achieve a near-perfect accuracy of 98.62%,improving classification accuracy.The results highlight the promising potential of voice analysis in PD diagnosis and monitoring.Integrating advanced signal processing techniques and machine learning models provides reliable and accessible tools for PD assessment,facilitating early intervention and improving patient outcomes.This study contributes to the field by demonstrating the effectiveness of the proposed methodology and the significant role of WMV in enhancing classification accuracy for PD severity detection.展开更多
基于不同分类器对同一样本分类能力不同,同一分类器对不同样本可分程度不同的思想,为不同样本赋予不同融合权重,提出了一种基于熵的自适应加权投票高分辨距离像(high range resolution profile,HRRP)融合识别方法。该方法将二分类相关...基于不同分类器对同一样本分类能力不同,同一分类器对不同样本可分程度不同的思想,为不同样本赋予不同融合权重,提出了一种基于熵的自适应加权投票高分辨距离像(high range resolution profile,HRRP)融合识别方法。该方法将二分类相关向量机(relevance vector machine,RVM)扩展为多类分类RVM概率模型,并对不同HRRP特征样本进行分类,利用每个多类分类RVM输出的样本后验概率信息计算出的熵值自适应为各个样本赋予权重,使得不同分类器以及同一分类器对不同样本的决策占有不同的比重,熵值越大的样本赋予的融合权重越低,最后通过加权投票方法实现融合识别,得到目标的最终识别结果。仿真实验结果验证了所提方法的有效性。展开更多
文摘Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicators of PD,making voice analysis a valuable tool for early detection and intervention.This study aims to assess and detect the severity of PD through voice analysis using the mobile device voice recordings dataset.The dataset consisted of recordings from PD patients at different stages of the disease and healthy control subjects.A novel approach was employed,incorporating a voice activity detection algorithm for speech segmentation and the wavelet scattering transform for feature extraction.A Bayesian optimization technique is used to fine-tune the hyperparameters of seven commonly used classifiers and optimize the performance of machine learning classifiers for PD severity detection.AdaBoost and K-nearest neighbor consistently demonstrated superior performance across various evaluation metrics among the classifiers.Furthermore,a weighted majority voting(WMV)technique is implemented,leveraging the predictions of multiple models to achieve a near-perfect accuracy of 98.62%,improving classification accuracy.The results highlight the promising potential of voice analysis in PD diagnosis and monitoring.Integrating advanced signal processing techniques and machine learning models provides reliable and accessible tools for PD assessment,facilitating early intervention and improving patient outcomes.This study contributes to the field by demonstrating the effectiveness of the proposed methodology and the significant role of WMV in enhancing classification accuracy for PD severity detection.