期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hypergeometric equations and weighted projective spaces
1
作者 CORTI Alessio GOLYSHEV Vasily 《Science China Mathematics》 SCIE 2011年第8期1577-1590,共14页
We compute the Hodge numbers of the polarised(pure) variation of Hodge structure V = grn-1WRn-1f!Z of the Landau-Ginzburg model f:Y → C mirror-dual to a weighted projective space wPn in terms of a variant of Reid'... We compute the Hodge numbers of the polarised(pure) variation of Hodge structure V = grn-1WRn-1f!Z of the Landau-Ginzburg model f:Y → C mirror-dual to a weighted projective space wPn in terms of a variant of Reid's age function of the anticanonical cone over wPn.This implies,for instance,that wPn has canonical singularities if and only if hn-1,0V = 1.We state a conjectural formula for the Hodge numbers of general hypergeometric variations.We show that a general fibre of the Landau-Ginzburg model is birational to a Calabi-Yau variety if and only if a general anticanonical section of wP is Calabi-Yau.We analyse the 104 weighted 3-spaces with canonical singularities,and show that a general anticanonical section is not a K3 surface exactly in those 9 cases where a generic fibre of the Landau-Ginzburg model is an elliptic surface of Kodaira dimension 1. 展开更多
关键词 mirror symmetry variations of Hodge structures hypergeometric functions weighted projective spaces Landau-Ginzburg models
原文传递
Diffeomorphism Classification of Smooth Weighted Complete Intersections
2
作者 Jian Bo WANG Yu Yu WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第2期299-312,共14页
Xn(d1,...,dr-1,dr.;w) and Xn(e1,...,er-1,dr;w) are two complex odd-dimensional smooth weighted complete intersections defined in a smooth weighted hypersurfaee
关键词 weighted projective space weighted complete intersection weighted hypersurface diffeo-morphism classification
原文传递
Hamiltonian Gromov–Witten Invariants on C^n+1 with S^1-action
3
作者 Ti Yao LI Bo Hui CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第3期309-330,共22页
Consider a Hamiltonian action of S1 on (Cn^n+1,ωstd), we shown that the Hamiltonian Gromov-Witten invariants of it are well-defined. After computing the Hamiltonian Gromov-Witten invariants of it, we construct a r... Consider a Hamiltonian action of S1 on (Cn^n+1,ωstd), we shown that the Hamiltonian Gromov-Witten invariants of it are well-defined. After computing the Hamiltonian Gromov-Witten invariants of it, we construct a ring homomorphism from HS1,CR(X, R) to the small orbifold quantum cohomology of X//rS^1 and obtain a simpler formula of the Gromov-Witten invariants for weighted projective space. 展开更多
关键词 Hamiltonian Gromov-Witten invariants orbifold Gromov-Witten invariants weighted projective space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部