Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. T...Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. The microstructure of the treated specimens was investigated by scanning electron microscopy (SEM). The Vickers microhardness was measured in different areas of welded joint before USPT and along the depth direction of the weld after USPT. The experimental results indicated that the welding buckling distortion of 5A06 aluminum alloy butt joint can be essentially corrected by USPT; the average correction rate reached 90.8% in this study. Furthermore, USPT enhanced specimens by work hardening. The microstructure of the peened zone was improved; moreover, the distribution of the precipitates and grains presented an apparent orientation.展开更多
The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material ...The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.展开更多
Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual...Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual stress. In this study, an elastic finite element method for predicting the welding distortion of three-dimensional thin-plate structures with considering welding sequence was proposed. In this method, the inherent strain was employed to model the local shrinkage due to welding itself, and the interface element was introduced to simulate the assembly process. The proposed method was applied to study the influence of welding sequence on the buckling distortion of the large thin-plate panel structure during assembly.展开更多
The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elas...The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process.展开更多
The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applie...The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applied thermal load was used to simulate the welding residual stress,thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied load analyses,which can reduce the quantities of calculating work effectively.The validation of the method was verified by comparison of the numerical calculation with experimental results.The prediction of buckling distortion for side walled structures of passenger train was performed and the calculation was in agreement with measuring results in general.It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.展开更多
A new moving or dynamic thermal tensioning technique-welding with trailing intense cooling was numerically simulated by finite element method(FEM)and experimentally investigated.The simulation results indicate that tr...A new moving or dynamic thermal tensioning technique-welding with trailing intense cooling was numerically simulated by finite element method(FEM)and experimentally investigated.The simulation results indicate that trailing intense cooling can increase significantly the longitudinal tensile plastic strain within the weld and its adjacent zone during cooling stage,which can partially or completely counterbalance the longitudinal compressive plastic strain formed in the heating stage and the solidification shrinkage formed in the cooling stage.Therefore the longitudinal shrinkage remaining in the weld and the adjacent zone is greatly reduced,which means that the residual stresses in the weldments are kept in a lower value and the residual distortion can be mitigated effectively.Meanwhile a series of parametric studies were conducted to demonstrate the influences of several key parameters such as cooling distance, cooling power and cooling width on the effectiveness of distortion control.Experimental results also verify the effectiveness of this distortion control technique and the reliability of the numerical simulation.展开更多
To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poinee...To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.展开更多
A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion devi...A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion device were introduced. Systematic trials were conducted to investigate the influence of several technological parameters including the distance between the extrusion tool and welding torch, the pressure acting on weldment, the dimension of the extrusion tool and its rotational speed on distortion control effect. Experimental results show that, as for 2A12T4 aluminum alloy weldment with 2 mm in thickness, 150 mm in width and 350 mm in length, when appropriate technological parameters are adopted, rotating extrusion can reduce its buckling deflection to below 3% of the original value. Implementing rotating extrusion during welding with an extrusion tool more than 100 mm away from the welding torch may achieve better distortion mitigation effect.展开更多
Based on the tests of a build-up welding at plate edge (BWPE) and amulti-layer build-up welding on plate (MBWP), the article studies on the solid-state phasetransformations which affect welding distortion process and ...Based on the tests of a build-up welding at plate edge (BWPE) and amulti-layer build-up welding on plate (MBWP), the article studies on the solid-state phasetransformations which affect welding distortion process and on the influence rule of transformationstarting temperature (TST) of welded metal to the welding residual distortion. The weldingdistortion can be decreased or controlled by the transformation volume expansion caused bysolid-state phase transformation of welded metal during the cooling. The test results of BWPE showthat when TST is at about 190 deg C, the bending distortion of welded specimen is the smallest, andits displacements at free end are decreased to 58 percent and 67 percent compared with those ofconventional welding electrodes A102 and E5015, which TST are less than room temperature and equalto 758 deg C respectively. The test results of MBWP show that when TST were at 100 approx 250 deg C.the welded specimen would appear reversible bending distortion compared with those of A102 andE5015. The maximum deflection value of reversible bending distortion in 8 mm thick plate is -2.94 mmat about 170 deg C of TST. The test results provide a valuable method to decrease or to controlwelding residual distortion.展开更多
The analytic-numerical hybrid model for calculating welding distortions in large welded structures is presented. Objective of the analytical model is the calculation of the plastic strains and their distribution after...The analytic-numerical hybrid model for calculating welding distortions in large welded structures is presented. Objective of the analytical model is the calculation of the plastic strains and their distribution after welding and thermal straightening process. The consideration of the essential physical relations is put into discussion. Afterwards the obtained plastic strains by the analytical calculation are loaded on an elastic FE-model of the structure and the distortions of the whole structure are predicted. The consideration of welding and thermal straightening scenarios and the assembling stages is done by taking into account the intermediate variation of the strain state at every processing step. The model is intended to be used for solving industrial tasks, i.e. intending acceptable precision and calculation time as well as low simulation costs. The application of the model is demonstrated on structures with many welds and straightening spots.展开更多
The buckling formation and influence factors during welding thin - plated structures were investigated based on finite element methods, An engineering treatment method for prdicating the buckling distor- tion wa...The buckling formation and influence factors during welding thin - plated structures were investigated based on finite element methods, An engineering treatment method for prdicating the buckling distor- tion was proposed in here. It was used the equivalent applied thermal - load to simulate the welding residual stress,therefore the calculation of complex welding distoriton can be transformed into 3D elas- tic structural applied- load analyses, which can reduce the quantities of calculating works effectively. The validation of the method was verified by comparison of the numerical simulation and experimental results. The simulation of buckling distorition for side - walled structrues of paseenger train was per- formed and the calculation was in agreement with measuring results in general. It was shown that the main factors for producing the buckling were the intermittent fillet and ping the during welding the stiffened beams and columns to the panel.The existence of the free edge of panels would reduce the crit- ical buckling stress and enlarge the deflection obviously,but the continuous weld in closed frames didn' t degrade the buckling situation.展开更多
A new technique named rotating extrusion was proposed that uses rotating extrusion action to rectify residual distortion of aluminum alloy thin-plate weldments to improve mechanical properties of welded joints. The ba...A new technique named rotating extrusion was proposed that uses rotating extrusion action to rectify residual distortion of aluminum alloy thin-plate weldments to improve mechanical properties of welded joints. The basic principle and device of rotating extrusion were introduced. The residual distortion and stresses in rotating extrusion weldments were compared with those in conventional weldments. The differences in microstructure and mechanical properties between conventional welded joints and rotating extrusion welded joints were investigated and analyzed in order to make clear the effect of rotating extrusion on the performance of aluminum alloy weldments. Experimental results show that rotating extrusion can enhance the hardness and tensile strength of aluminum alloy welded joints evidently. This method has also potential effect on extending the life of welded structures.展开更多
From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, ...From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.展开更多
From the viewpoint of welding mechanics, a new welding technology—trailing peening was applied firstly to weld aluminum alloy LY12CZ sheet with high susceptibility to hot cracking. Trailing peening can exert a transv...From the viewpoint of welding mechanics, a new welding technology—trailing peening was applied firstly to weld aluminum alloy LY12CZ sheet with high susceptibility to hot cracking. Trailing peening can exert a transverse extrusion strain on the metal in brittle temperature region (BTR) which can compensate for the tensioning strain during the cooling procedure post welding. So, welding hot cracking of LY12CZ sheet can be controlled effectively on the special jig for hot cracking experiment, and the phenomenon of hot cracking can’t be found in specimens with large dimensions finally. At the same time, welding with trailing peening can decrease welding distortion caused by longitudinal and transverse shrinkage of weld obviously. Due to strengthening the poor position-weld toe during the process of welding, the residual stress distribution of welded joint is more reasonable. Contrast with conventional welding, mechanical properties such as tensile strength, prolongation ratio and cold-bending angle of welded joint with trailing peening can be improved obviously, and rupture position of welded joint transits from weld toe at conventional welding to weld metal at trailing peening. So, welding with trailing peening can be regarded as a dynamic welding method with low stress, little distortion and hot cracking-free really. As far as theoretical analysis is concerned, the technology of trailing peening can be used to weld the materials with high susceptibility to hot cracking such as LY12CZ and LD10, and solve the welding distortion of thin plate-shell welded structures which contain closed welds such as flange. In addition, the technology of trailing peening has many advantages: simple device, high efficiency, low cost and flexible application which make the welding method have widely applied foreground in the field of aeronautics and aerospace.展开更多
Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and align...Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.展开更多
Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of sp...Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source eficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.展开更多
In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the obje...In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the objective function of welding distortion has been utilized to determine an optimum welding sequence by optimization simulation. The validity of genetic algorithm method combining with the thermo-mechanical nonlinear finite element model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum weldiing.sequence is determined by a genetic algorithm. All done in this study indicates that the new method presented in this article will have important practical application for designing the welding technical parameters in the future.展开更多
Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on ...Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.展开更多
A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint. And the characteristics of...A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint. And the characteristics of residual stress distribution and deformation are numerically investigated. In the simulation, the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used. The calculated results show that higher residual stress is distributed in and surround the weld zone. Its peak value is very close to the yield strength of base metal. Besides, a large deformation appears in the middle and rear part of the weldment.展开更多
Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is pre...Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similaritybased inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.展开更多
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. The microstructure of the treated specimens was investigated by scanning electron microscopy (SEM). The Vickers microhardness was measured in different areas of welded joint before USPT and along the depth direction of the weld after USPT. The experimental results indicated that the welding buckling distortion of 5A06 aluminum alloy butt joint can be essentially corrected by USPT; the average correction rate reached 90.8% in this study. Furthermore, USPT enhanced specimens by work hardening. The microstructure of the peened zone was improved; moreover, the distribution of the precipitates and grains presented an apparent orientation.
基金Project(51465031)supported by the National Natural Science Foundation of ChinaProject(17JR5RA126)supported by the Natural Science Foundation of Gansu Province,China
文摘The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.
文摘Ships and automobiles are fabricated front thin plates. To assemble parts, welding is commonly employed. However, welding distortion in large thin-plate panel structure is usually cased by buckling due to the residual stress. In this study, an elastic finite element method for predicting the welding distortion of three-dimensional thin-plate structures with considering welding sequence was proposed. In this method, the inherent strain was employed to model the local shrinkage due to welding itself, and the interface element was introduced to simulate the assembly process. The proposed method was applied to study the influence of welding sequence on the buckling distortion of the large thin-plate panel structure during assembly.
基金financial support to this project from the Chinese CSR Qingdao Sifang Co.,Ltd
文摘The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process.
文摘The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applied thermal load was used to simulate the welding residual stress,thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied load analyses,which can reduce the quantities of calculating work effectively.The validation of the method was verified by comparison of the numerical calculation with experimental results.The prediction of buckling distortion for side walled structures of passenger train was performed and the calculation was in agreement with measuring results in general.It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.
文摘A new moving or dynamic thermal tensioning technique-welding with trailing intense cooling was numerically simulated by finite element method(FEM)and experimentally investigated.The simulation results indicate that trailing intense cooling can increase significantly the longitudinal tensile plastic strain within the weld and its adjacent zone during cooling stage,which can partially or completely counterbalance the longitudinal compressive plastic strain formed in the heating stage and the solidification shrinkage formed in the cooling stage.Therefore the longitudinal shrinkage remaining in the weld and the adjacent zone is greatly reduced,which means that the residual stresses in the weldments are kept in a lower value and the residual distortion can be mitigated effectively.Meanwhile a series of parametric studies were conducted to demonstrate the influences of several key parameters such as cooling distance, cooling power and cooling width on the effectiveness of distortion control.Experimental results also verify the effectiveness of this distortion control technique and the reliability of the numerical simulation.
文摘To fit in with the strict geometrical integrity and ensure dimensionally consistent fabrication of the welded aerospace structures. the low stress no distortion(LSND)welding, a technique for thin materials, was poineered and developed to provide an ininprocess active control of welding distortion. Satisfactory distortion free results were achieved in both welding of jet engine cases of heat-resistance alloys and rocket fuel tanks of aluminuim alloys, and there need no. reworking operations for post-weld distortion correction. Based on the 'static' method a newly developed method for dvnamic in-process control is also discussed in this paper. Both methods provide quanutiative in-process control of incompatible strains in weld zone and low stress no distortion welding results.
基金Project(2007DFR70070) supported by Sino-Russia Intergovernmental Science and Technology Cooperation Program
文摘A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion device were introduced. Systematic trials were conducted to investigate the influence of several technological parameters including the distance between the extrusion tool and welding torch, the pressure acting on weldment, the dimension of the extrusion tool and its rotational speed on distortion control effect. Experimental results show that, as for 2A12T4 aluminum alloy weldment with 2 mm in thickness, 150 mm in width and 350 mm in length, when appropriate technological parameters are adopted, rotating extrusion can reduce its buckling deflection to below 3% of the original value. Implementing rotating extrusion during welding with an extrusion tool more than 100 mm away from the welding torch may achieve better distortion mitigation effect.
基金This project is supported by National Natural Science Foundation of China (No.50175079) China Postdoctoral Science Foundation (No.2003033348).
文摘Based on the tests of a build-up welding at plate edge (BWPE) and amulti-layer build-up welding on plate (MBWP), the article studies on the solid-state phasetransformations which affect welding distortion process and on the influence rule of transformationstarting temperature (TST) of welded metal to the welding residual distortion. The weldingdistortion can be decreased or controlled by the transformation volume expansion caused bysolid-state phase transformation of welded metal during the cooling. The test results of BWPE showthat when TST is at about 190 deg C, the bending distortion of welded specimen is the smallest, andits displacements at free end are decreased to 58 percent and 67 percent compared with those ofconventional welding electrodes A102 and E5015, which TST are less than room temperature and equalto 758 deg C respectively. The test results of MBWP show that when TST were at 100 approx 250 deg C.the welded specimen would appear reversible bending distortion compared with those of A102 andE5015. The maximum deflection value of reversible bending distortion in 8 mm thick plate is -2.94 mmat about 170 deg C of TST. The test results provide a valuable method to decrease or to controlwelding residual distortion.
文摘The analytic-numerical hybrid model for calculating welding distortions in large welded structures is presented. Objective of the analytical model is the calculation of the plastic strains and their distribution after welding and thermal straightening process. The consideration of the essential physical relations is put into discussion. Afterwards the obtained plastic strains by the analytical calculation are loaded on an elastic FE-model of the structure and the distortions of the whole structure are predicted. The consideration of welding and thermal straightening scenarios and the assembling stages is done by taking into account the intermediate variation of the strain state at every processing step. The model is intended to be used for solving industrial tasks, i.e. intending acceptable precision and calculation time as well as low simulation costs. The application of the model is demonstrated on structures with many welds and straightening spots.
文摘The buckling formation and influence factors during welding thin - plated structures were investigated based on finite element methods, An engineering treatment method for prdicating the buckling distor- tion was proposed in here. It was used the equivalent applied thermal - load to simulate the welding residual stress,therefore the calculation of complex welding distoriton can be transformed into 3D elas- tic structural applied- load analyses, which can reduce the quantities of calculating works effectively. The validation of the method was verified by comparison of the numerical simulation and experimental results. The simulation of buckling distorition for side - walled structrues of paseenger train was per- formed and the calculation was in agreement with measuring results in general. It was shown that the main factors for producing the buckling were the intermittent fillet and ping the during welding the stiffened beams and columns to the panel.The existence of the free edge of panels would reduce the crit- ical buckling stress and enlarge the deflection obviously,but the continuous weld in closed frames didn' t degrade the buckling situation.
文摘A new technique named rotating extrusion was proposed that uses rotating extrusion action to rectify residual distortion of aluminum alloy thin-plate weldments to improve mechanical properties of welded joints. The basic principle and device of rotating extrusion were introduced. The residual distortion and stresses in rotating extrusion weldments were compared with those in conventional weldments. The differences in microstructure and mechanical properties between conventional welded joints and rotating extrusion welded joints were investigated and analyzed in order to make clear the effect of rotating extrusion on the performance of aluminum alloy weldments. Experimental results show that rotating extrusion can enhance the hardness and tensile strength of aluminum alloy welded joints evidently. This method has also potential effect on extending the life of welded structures.
文摘From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.
文摘From the viewpoint of welding mechanics, a new welding technology—trailing peening was applied firstly to weld aluminum alloy LY12CZ sheet with high susceptibility to hot cracking. Trailing peening can exert a transverse extrusion strain on the metal in brittle temperature region (BTR) which can compensate for the tensioning strain during the cooling procedure post welding. So, welding hot cracking of LY12CZ sheet can be controlled effectively on the special jig for hot cracking experiment, and the phenomenon of hot cracking can’t be found in specimens with large dimensions finally. At the same time, welding with trailing peening can decrease welding distortion caused by longitudinal and transverse shrinkage of weld obviously. Due to strengthening the poor position-weld toe during the process of welding, the residual stress distribution of welded joint is more reasonable. Contrast with conventional welding, mechanical properties such as tensile strength, prolongation ratio and cold-bending angle of welded joint with trailing peening can be improved obviously, and rupture position of welded joint transits from weld toe at conventional welding to weld metal at trailing peening. So, welding with trailing peening can be regarded as a dynamic welding method with low stress, little distortion and hot cracking-free really. As far as theoretical analysis is concerned, the technology of trailing peening can be used to weld the materials with high susceptibility to hot cracking such as LY12CZ and LD10, and solve the welding distortion of thin plate-shell welded structures which contain closed welds such as flange. In addition, the technology of trailing peening has many advantages: simple device, high efficiency, low cost and flexible application which make the welding method have widely applied foreground in the field of aeronautics and aerospace.
文摘Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.
文摘Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source eficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.
文摘In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the objective function of welding distortion has been utilized to determine an optimum welding sequence by optimization simulation. The validity of genetic algorithm method combining with the thermo-mechanical nonlinear finite element model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum weldiing.sequence is determined by a genetic algorithm. All done in this study indicates that the new method presented in this article will have important practical application for designing the welding technical parameters in the future.
文摘Based on the conventional uniaxial pre-tensile stress method during welding, this study presents a new method of welding with biaxial pre-stress. With the help of numerical simulation, experiments were carried out on the self-designed device. Except for the control on residual stress and distortion us-welded, the experimental results also show its effect on the prevention of hot cracks, thus this method can make up for the disadvantage of the conventional pre-stress method. Hot cracks disappear when the value of pre-stress surpasses 0. 2 σs(yield limit). Welded thin plates with low-level residual stress, little distortion and no hot cracks are obtained with longitudinal pre-tensile stress level between 0. 6σsand 0. 7σs and precompressive stress between 0. 2 σs and 0. 3 σs in transverse direction.
基金supported by the Sino-Russian Cooperation Research Project of China (No. 2009DFR50170)the National Natural Science Foundation of China (No.51105182)the College Natural Science Foundation of Jiangsu Province (No. 11KJB460004)
文摘A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint. And the characteristics of residual stress distribution and deformation are numerically investigated. In the simulation, the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used. The calculated results show that higher residual stress is distributed in and surround the weld zone. Its peak value is very close to the yield strength of base metal. Besides, a large deformation appears in the middle and rear part of the weldment.
基金supported by 2013 Comprehensive Reform Pilot of Marine Engineering Specialty(No.ZG0434)
文摘Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similaritybased inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.