Micro welding of dissimilar metals can meet many performance requirements for modern engineering structures. In this experiment, laser micro welding of copper-aluminum dissimilar metals was conducted with an HWLW-300A...Micro welding of dissimilar metals can meet many performance requirements for modern engineering structures. In this experiment, laser micro welding of copper-aluminum dissimilar metals was conducted with an HWLW-300A energy negative feedback Nd:YAG pulse laser. By using the overlap welding method with copper on aluminum, with the laser energy being distributed unevenly, good weld joints were obtained. In this paper, the welding mechanism was analyzed from aspects such as welding temperature and the specific heat capacity of the solid metal. Existing defects were identified, and a feasible improvement scheme was proposed.展开更多
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and...This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.展开更多
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro...The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.展开更多
Aluminium-copper hybrid parts, as a substitution to copper parts, result in weight and cost reduction, and are relevant in applications related to the electronic, heating and cooling sector. However, aluminium to copp...Aluminium-copper hybrid parts, as a substitution to copper parts, result in weight and cost reduction, and are relevant in applications related to the electronic, heating and cooling sector. However, aluminium to copper joined by thermal welding processes presents challenges in terms of achieving good joint quality. This is attributed to their dissimilar mechanical and thermal properties which result in large stress gradients during heating. This study investigated joining of aluminium to copper sheets by electromagnetic pulse welding, which is a solid-state process that uses electromagnetic forces for joining of dissimilar materials. Hybrid sheet welds were obtained for all parameters conditions, selected according to a Taguchi L18 design. The structural and mechanical characteristics were examined and related to the welding parameters by means of a Pareto analysis and response graphs. The welded zone started with a wavy interface with interfacial layers and defects and evolved to a flat interface without interfacial layers. The maximum transferable force depended on the minimum specimen thickness and the strength of the hybrid sheet weld. In case of aluminium sheet thickness reduction, the maximum transferable force was linearly correlated with the aluminium sheet thickness. High quality joints were obtained for no aluminium sheet thickness reduction and for a sheet weld strength which was at least as high as that of the base material. The most effective way to increase the transferable force was to lower the initial gap and to increase the free length, which resulted in no aluminium sheet thickness reduction. Alternatively, the use of a rounded spacer decreased the effect of the aluminium sheet thickness on the transferable force. An increase in weld width was achieved for an increase in capacitor charging energy and gap, whereas an increase in weld length was obtained for a decrease in gap. An increase in weld width did not necessarily result in an increase in the transferable force. In the regarded cases, a hybrid sheet with narrow weld width could therefore have higher quality.展开更多
For the purpose of improving the strength of this dissimilarjoint, the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the laying edges of the...For the purpose of improving the strength of this dissimilarjoint, the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the laying edges of the friction stir welded and hybrid welded AI6061-T6/AZ31 alloy plates. The difference in microstructural and mechanical characteristics of friction stir welded and hybrid welded AI6061-TO/AZ31 joint was compared. Hybrid butt- welding of aluminum alloy plate to a magnesium alloy plate was successfully achieved with Ni foil as filler material, while defect-free laser-friction stir welding (FSW) hybrid welding was achieved by using a laser power of 2 kW. Transverse tensile strength of the joint reached about 66% of the Mg base metal tensile strength in the case of hybrid welding with Ni foil and showed higher value than that of the friction stir welded joint with and without the third material foil. This may be due to the presence of less brittle Ni-based intermetallic phases instead of Al12Mg17.展开更多
Aluminum alloy plates were joined to galvanized steel sheets with lap joint by laser-MIG arc hybrid brazingfusion welding with AlSiS, AlSi12, AlMg5 filler wires, respectively. The influences of Si and Mg on the micros...Aluminum alloy plates were joined to galvanized steel sheets with lap joint by laser-MIG arc hybrid brazingfusion welding with AlSiS, AlSi12, AlMg5 filler wires, respectively. The influences of Si and Mg on the microstructure and mechanical properties of the brazed-fusion welded joint were studied. The increase of Si element in the fusion weld can make the grain refined, and increase the microhardness of the fusion weld. Therefore, the microhardness in fusion weld made from AlSi12 and AlSi5 filler wires can be up to 98.4 HV0.01 and 96.8 HV0.01, which is higher than that from AlMg5 filler wire of 70.4 HV0.01. The highest tensile strength can reach 178.9 MPa made with AlMg5 filler wire. The tensile strength is 172.43 MPa made with AlSi5 filler wire. However, the lowest tensile strength is 144 MPa made with AlSi12 filler wire. The average thicknesses of the intermetallic compounds (IMCs) layer with AlSiS, AlSi12, AlMg5 filler wires are 1.49-2.64 #m. The IMCs layer made from AlSi5, AlSi12 filler wires are identified as FeAl2, Fe2Als, Fe4Al13 and Al0.sFesSio.5, that from AlMg5 filler wire are identified as FeAl2, Fe2Al5 and Fe4Al13.展开更多
实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化...实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化控制系统和工艺参数的基础上采用脉冲旁路耦合电弧焊方法将铝镁合金ER5356堆焊到304不锈钢板上,获得结合良好的焊缝。对焊接接头进行扫描电镜(Scanning electron microscope,SEM)、能量色散光谱仪(Energy dispersive spectrometry,EDS)分析,结果表明:铝与不锈钢焊接接头中间层金属间化合物平均厚度约为8μm,小于10μm的临界厚度;脉冲旁路耦合电弧焊方法能够实现铝钢的连接,是一种新型低成本低热输入电弧焊方法。展开更多
文摘Micro welding of dissimilar metals can meet many performance requirements for modern engineering structures. In this experiment, laser micro welding of copper-aluminum dissimilar metals was conducted with an HWLW-300A energy negative feedback Nd:YAG pulse laser. By using the overlap welding method with copper on aluminum, with the laser energy being distributed unevenly, good weld joints were obtained. In this paper, the welding mechanism was analyzed from aspects such as welding temperature and the specific heat capacity of the solid metal. Existing defects were identified, and a feasible improvement scheme was proposed.
基金This project is supported by National Natural Science Foundation of China ( NSFC)(10577010)
文摘This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.
基金financially supported by the National Natural Science Foundation of China(No.51704001)the Natural Science Foundation of Anhui Province,China(No.2008085J23)the Talent Project of Anhui Province,China(Z175050020001)。
文摘The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.
文摘Aluminium-copper hybrid parts, as a substitution to copper parts, result in weight and cost reduction, and are relevant in applications related to the electronic, heating and cooling sector. However, aluminium to copper joined by thermal welding processes presents challenges in terms of achieving good joint quality. This is attributed to their dissimilar mechanical and thermal properties which result in large stress gradients during heating. This study investigated joining of aluminium to copper sheets by electromagnetic pulse welding, which is a solid-state process that uses electromagnetic forces for joining of dissimilar materials. Hybrid sheet welds were obtained for all parameters conditions, selected according to a Taguchi L18 design. The structural and mechanical characteristics were examined and related to the welding parameters by means of a Pareto analysis and response graphs. The welded zone started with a wavy interface with interfacial layers and defects and evolved to a flat interface without interfacial layers. The maximum transferable force depended on the minimum specimen thickness and the strength of the hybrid sheet weld. In case of aluminium sheet thickness reduction, the maximum transferable force was linearly correlated with the aluminium sheet thickness. High quality joints were obtained for no aluminium sheet thickness reduction and for a sheet weld strength which was at least as high as that of the base material. The most effective way to increase the transferable force was to lower the initial gap and to increase the free length, which resulted in no aluminium sheet thickness reduction. Alternatively, the use of a rounded spacer decreased the effect of the aluminium sheet thickness on the transferable force. An increase in weld width was achieved for an increase in capacitor charging energy and gap, whereas an increase in weld length was obtained for a decrease in gap. An increase in weld width did not necessarily result in an increase in the transferable force. In the regarded cases, a hybrid sheet with narrow weld width could therefore have higher quality.
文摘For the purpose of improving the strength of this dissimilarjoint, the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the laying edges of the friction stir welded and hybrid welded AI6061-T6/AZ31 alloy plates. The difference in microstructural and mechanical characteristics of friction stir welded and hybrid welded AI6061-TO/AZ31 joint was compared. Hybrid butt- welding of aluminum alloy plate to a magnesium alloy plate was successfully achieved with Ni foil as filler material, while defect-free laser-friction stir welding (FSW) hybrid welding was achieved by using a laser power of 2 kW. Transverse tensile strength of the joint reached about 66% of the Mg base metal tensile strength in the case of hybrid welding with Ni foil and showed higher value than that of the friction stir welded joint with and without the third material foil. This may be due to the presence of less brittle Ni-based intermetallic phases instead of Al12Mg17.
基金supported by the National Natural Science Foundation of China(No.50905099)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090131120027)
文摘Aluminum alloy plates were joined to galvanized steel sheets with lap joint by laser-MIG arc hybrid brazingfusion welding with AlSiS, AlSi12, AlMg5 filler wires, respectively. The influences of Si and Mg on the microstructure and mechanical properties of the brazed-fusion welded joint were studied. The increase of Si element in the fusion weld can make the grain refined, and increase the microhardness of the fusion weld. Therefore, the microhardness in fusion weld made from AlSi12 and AlSi5 filler wires can be up to 98.4 HV0.01 and 96.8 HV0.01, which is higher than that from AlMg5 filler wire of 70.4 HV0.01. The highest tensile strength can reach 178.9 MPa made with AlMg5 filler wire. The tensile strength is 172.43 MPa made with AlSi5 filler wire. However, the lowest tensile strength is 144 MPa made with AlSi12 filler wire. The average thicknesses of the intermetallic compounds (IMCs) layer with AlSiS, AlSi12, AlMg5 filler wires are 1.49-2.64 #m. The IMCs layer made from AlSi5, AlSi12 filler wires are identified as FeAl2, Fe2Als, Fe4Al13 and Al0.sFesSio.5, that from AlMg5 filler wire are identified as FeAl2, Fe2Al5 and Fe4Al13.
文摘实现铝钢良好连接的关键是有效控制焊接热输入,尽量降低中间层铝铁金属间化合物的厚度,一般认为中间层金属间化合物厚度小于10μm时铝钢接头质量良好。提出旁路耦合电弧熔钎焊方法,通过调节旁路电弧电流的大小来控制焊接热输入。在优化控制系统和工艺参数的基础上采用脉冲旁路耦合电弧焊方法将铝镁合金ER5356堆焊到304不锈钢板上,获得结合良好的焊缝。对焊接接头进行扫描电镜(Scanning electron microscope,SEM)、能量色散光谱仪(Energy dispersive spectrometry,EDS)分析,结果表明:铝与不锈钢焊接接头中间层金属间化合物平均厚度约为8μm,小于10μm的临界厚度;脉冲旁路耦合电弧焊方法能够实现铝钢的连接,是一种新型低成本低热输入电弧焊方法。