期刊文献+
共找到134,296篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and mechanical performance of AZ31/6061 lap joints welded by laser-TIG hybrid welding with Zn-Al alloy filler metal
1
作者 Xinze Lv Liming Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3325-3338,共14页
A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution... A series of Zn-xAl(x=0-35 wt.%)alloy filler metals were designed to join AZ31 Mg alloy to 6061 Al alloy by laser-TIG hybrid welding.The effect of Al content on the wettability of filler metals,microstructure evolution and strength of joint was investigated.The results indicated that the strength of joints was improved with the increase of Al content in filler metals.When Zn-15Al filler was used,the ultimate fracture load reached the maximum of 1475.3 N/cm,which was increased by 28%than that with pure Zn filler.The reason is that the Al element acts as a"reaction depressant"in filler metal,which contributes to inhibiting the dissolution of Mg base metal and the Mg-Zn reaction.The addition of appropriate quantity of Al element promoted the precipitation of Al-rich solid solution instead of Zn solid solution.The MgZn_(2) IMCs have lower lattice mismatch with Al solid solution than Zn solid solution,thus the strength of joints is improved.However,the excessive addition of Al caused the formation of brittle Mg32(Al,Zn)49 ternary compounds,leading to the deterioration of joint performance. 展开更多
关键词 Laser-TIG hybrid welding Mg-Al dissimilar joint Intermetallic compounds microstructure FRACTURE
下载PDF
Influence of heat input on the microhardness and microstructure of the welding interface between nickel-based alloy and low-alloy steel
2
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第3期33-38,共6页
The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work... The evolution of microstructure and local properties near the welding interface is essential for the service safety of dissimilar metal welded joints between nickel-based alloy(NA) and low-alloy steel(LA).In this work,NA filler metal was deposited on LA substrate under different heat inputs by tungsten inert gas(TIG) welding.Microstructural characterization and microhardness tests were carried out near the prepared cladding interfaces.Optical and scanning electron microscopes show the lack of evident hardening transition layer along the welding interface.As the heat input increases,the mean hardness of the deposited layer also increases remarkably due to the rising dilution rate.Microstructural characterization shows a significant composition gradient across the cladding interface,but the diffusion gradient is limited to a small range.Under high heat input,a planar grain zone is generated along the interface due to the large temperature gradient across the interface region. 展开更多
关键词 welding interface heat input microstructure MICROHARDNESS
下载PDF
Influence of heat input on microhardness and microstructure across the welding interface between stainless steel and low alloy steel
3
作者 ZHU Min 《Baosteel Technical Research》 CAS 2024年第1期14-21,共8页
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl... The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects. 展开更多
关键词 welding interface transition layer heat input microstructure hardness
下载PDF
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
4
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Effect of V content on microstructures and properties of TiC cermet fusion welding interface
5
作者 魏炜 徐莹 +2 位作者 王旭 黄智泉 刘胜新 《China Welding》 CAS 2024年第1期40-45,共6页
The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert... The effects of vanadium(V)on the microstructures and mechanical properties of the TiC cermet fusion welding interface were studied by adjusting the content of V in the self-developed flux-cored wires using metal inert gas arc(MIG)welding for surfacing on the TiC cermet.The results show that the increase in V content promotes the element diffusion between TiC cermet and weld metal.There are no de-fects observed in the interface,and the diffusion of elements refers to excellent metallurgical bonding.The shear strength of the fusion zone initially decreases and then increases with the increase in V content.The maximum shear strength of the TiC cermet/weld interface,reaching 552 MPa,occurred when the V content reached 0.65%.Meanwhile,the average hardness in the transition zone reached 488.2 HV0.2. 展开更多
关键词 TiC cermet MIG welding INTERFACE V content shear strength
下载PDF
Microstructure,Corrosion and Mechanical Properties of Medium-Thick 6061-T6 Alloy/T2 Pure Cu Dissimilar Joints Produced by Double Side Friction Stir Z Shape Lap-Butt Welding
6
作者 Jiuxing Tang Guoxin Dai +5 位作者 Lei Shi Chuansong Wu Sergey Mironov Surendra Kumar Patel Song Gao Mingxiao Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期385-400,共16页
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi... A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance. 展开更多
关键词 DS-FSZW Al/Cu dissimilar joint Corrosion behaviour Intermetallic compounds microstructure Mechanical properties
下载PDF
Metallurgical Microstructure Complexity in the Electron Beam Welding (EBW) Joint of Ti6246
7
作者 Daniel Moreno Yohanan Nachmana +5 位作者 Roei Saraga Tal Rokah Denis Panchenco Michael Mansano Elinor Itzhaky Moshe Shapira 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期100-111,共12页
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i... Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone. 展开更多
关键词 Ti Alloys welding Phase Formation HARDNESS METALLOGRAPHY
下载PDF
Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating
8
作者 Guangming Xie Ruihai Duan +2 位作者 Yuqian Wang Zong’an Luo Guodong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期724-733,共10页
Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which conside... Fusion welding easily causes microstructural coarsening in the heat-affected zone(HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ(ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding(FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding(GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone(NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW. 展开更多
关键词 pipeline steel thick-gauge plate friction stir welding microstructure TOUGHNESS
下载PDF
Friction welding influence on microstructure,microhardness and hardness behavior of CrNiMo steel(AISI 316)
9
作者 Ammar Jabbar Hassan Billel Cheniti +3 位作者 Brahim Belkessa Taoufik Boukharouba Djamel Miroud Nacer-Eddine Titouche 《China Welding》 CAS 2023年第3期21-27,共7页
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP... For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions. 展开更多
关键词 friction welding austenitic stainless steel microstructure MICROHARDNESS HARDNESS
下载PDF
Oxide distribution and microstructure in welding zones from porthole die extrusion 被引量:4
10
作者 张新明 冯迪 +1 位作者 史兴宽 刘胜胆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期765-772,共8页
The oxide distribution and microstructure in longitudinal and transverse welding zones during the billet-to-billet extrusion process through porthole die were adequately investigated by means of finite element method,... The oxide distribution and microstructure in longitudinal and transverse welding zones during the billet-to-billet extrusion process through porthole die were adequately investigated by means of finite element method,scanning electron microscopy and optical microscopy.The results indicate that the oxides exist at the interface between the matrix and transverse welding zone rather than longitudinal welding seam.The longitudinal welding zone reveals a darker band including the largest grain with irregular shape due to the abnormal grain growth under the heavy shear deformation and high temperature.The transverse welding zone consists of equiaxed recrystallized grains which are a little finer than those in the longitudinal welding seam. 展开更多
关键词 porthole die extrusion welding oxide distribution welding microstructure
下载PDF
Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy 被引量:6
11
作者 温彤 刘诗尧 +2 位作者 陈世 刘澜涛 杨臣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期397-404,共8页
A device for superimposing vibration on workpiece in both horizontal and vertical directions during tungsten-arc inert gas (TIG) welding was developed, with maximum power output of 2 kW at frequency of 15 kHz. AZ31 ... A device for superimposing vibration on workpiece in both horizontal and vertical directions during tungsten-arc inert gas (TIG) welding was developed, with maximum power output of 2 kW at frequency of 15 kHz. AZ31 sheets with thickness of I and 3 mm were used in the vibratory welding. Microstructures along with the mechanical properties of the weld joints under different vibrating conditions (vibration direction, vibration amplitude and groove angle) were examined. It is observed that the grain size in welding zone decreases remarkably with the application of vibration, while the amount of second phase β-Mg_17Al_12 within the zone decreases slightly; meanwhile, microhardness of the weld joints, macroscopic tensile strength and elongation of the weldment increase. Vibration, especially the one along vertical direction, has more impact on the performance of the thick weldments. Influence of vibration on mierostructure and mechanical properties of weldments is affected by wave energy transferring in the melt and depends on the processing and geometric parameters including amplitude and direction of vibration, thickness, and groove angles. 展开更多
关键词 magnesium alloy TIG welding VIBRATION microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding 被引量:8
12
作者 李夏威 张大童 +1 位作者 邱诚 张文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1298-1306,共9页
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ... The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test. 展开更多
关键词 friction stir welding dissimilar butt joint microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding 被引量:9
13
作者 张秋征 宫文彪 刘威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1779-1786,共8页
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of... Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN. 展开更多
关键词 aluminum alloy COPPER friction stir welding dissimilar material microstructure mechanical properties
下载PDF
Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding 被引量:12
14
作者 易杰 曹淑芬 +2 位作者 李落星 郭鹏程 刘开勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3204-3211,共8页
The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-... The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-MIG heat source of double-ellipsoidal volumetric model were developed to simulate the temperature and stress fields under different welding conditions.The macro-morphology and microstructure of welding joints at the corresponding currents were observed in the experiment.The results show that the best condition is at an average current of 90 A and current difference of 40 A,when the maximum temperature is 200 °C higher than the fusion points,with the temperature difference of about 100 °C and stress change of 10 MPa between thermal pulse and thermal base.Under these conditions,Al alloy T-joint with proper fusion condition has smooth fish-scale welding appearance and finer microstructure.Furthermore,the thermal curves and stress distribution in the experiment are consistent with those in the simulation,verifying the precision of the welding simulation. 展开更多
关键词 double-pulsed MIG welding Al alloy T-joint welding current STRESS
下载PDF
Dissimilar welding of high nitrogen stainless steel and low alloy high strength steel under different shielding gas composition:Process,microstructure and mechanical properties
15
作者 Zeng Liu Cheng-lei Fan +3 位作者 Chun-li Yang Zhu Ming San-bao Lin Lang-ping Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期138-153,共16页
Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfe... Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint. 展开更多
关键词 High nitrogen steel Dissimilar steel joints Shielding gas Metal transfer microstructure Mechanical properties
下载PDF
Microstructures and properties of welded joint of aluminum alloy to galvanized steel by Nd:YAG laser + MIG arc hybrid brazing-fusion welding 被引量:5
16
作者 秦国梁 苏玉虎 王术军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期989-995,共7页
According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(A... According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively. 展开更多
关键词 brazing-fusion weldingi welding of dissimilar metals hybrid welding mechanical properties intermetallic compounds
下载PDF
Wettability, microstructure and properties of 6061 aluminum alloy/304 stainless steel butt joint achieved by laser-metal inert-gas hybrid welding-brazing 被引量:7
17
作者 Jun-yu XUE Yuan-xing LI +1 位作者 Hui CHEN Zong-tao ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期1938-1946,共9页
Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent join... Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process. 展开更多
关键词 welding-BRAZING laser-metal inert-gas hybrid welding butt joint microstructure
下载PDF
Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding,friction stir vibration welding and tungsten inert gas welding:A comparative study 被引量:5
18
作者 Behrouz Bagheri Mahmoud Abbasi Amin Abdollahzadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期450-461,共12页
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a m... This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW.The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG.In addition,the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength,hardness,and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG.The vibration during FSW enhanced dynamic recrystallization,which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%,whereas those of FSW and TIG were approximately 74%and 67%,respectively. 展开更多
关键词 friction stir welding VIBRATION tungsten inert gas welding mechanical characteristics microstructure
下载PDF
Microstructure and property research on welded joints of 7xxx aluminum alloy welding wire TIG for 7075 aluminum alloy 被引量:10
19
作者 Li Xiaoping Liu Xiao +3 位作者 Li Runzhou Wang ZhuangZhuang Guo Lixiang Lei Weining 《China Welding》 CAS 2021年第4期58-64,共7页
7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+... 7 xxx welding wire was self-made by spray forming ingots drawn to series welding wires products,and then TIG butt welding test is used for 5 mm thick 7075 high-strength aluminium alloy.After welding,the stress relief+solid-solution aging heat treatment(T6)were performed to joints,and the mechanical properties and microstructure of the joints before and after heat treatment were comparative analyzed.The results show that the properties of the heat-affected zone(HAZ)of the joint before heat treatment decreas,and the joint is softened.The welded joints tensile strength is 271.8 MPa,the elongation is 5.6%,and the average hardness of the weld is 118.4 HV.The second phase particles such asη(Mg Zn2),S(Al2 Cu Mg),Al13 Fe4 are distributed in a network layer,with no apparent element segregation.After heat treatment,the structure of each area of the joint is coarsened,and a small amount of Fe-containing impurity phases are distributed.Theηand S phases are dissolved in the matrix.The hardness of each area of the joint is increased to 155 HV,and the softening zone is disappeared,this leads the joint elongation close to 16.9%.The tensile strength is increased to 511.8 MPa,reaching 94%of the base metal tensile strength. 展开更多
关键词 7xxx aluminium alloy welding wire TIG welding on 7075 aluminium alloy heat treatment microstructure and properties
下载PDF
Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints 被引量:13
20
作者 T. S. BALASUBRAMANIAN M. BALAKRISHNAN +1 位作者 V. BALASUBRAMANIAN M. A. MUTHU MANICKAM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1253-1262,共10页
Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent hig... Titanium alloys have been successfully applied for aerospace, ship and chemical industries because they possess many good characteristics such as high specific strength, superior corrosion resistance and excellent high temperature resistance. Though these alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Weld thermal cycle of the processes will control the weld metal solidification and subsequent phase transformation and resultant microstructure. The welded joints of Ti-6Al-4V alloy were fabricated by gas tungsten arc welding (GTAW), laser beam welding (LBW) and electron beam welding (EBW) processes. The joints fabricated by EBW process exhibit higher strength compared with the GTAW and LBW joints; but the joints by GTAW process exhibit higher impact toughness compared with the LBW and EBW joints. The resultant tensile and impact properties of the welded joints were correlated with the weld metal microstructures. 展开更多
关键词 titanium alloy gas tungsten arc welding laser beam welding electron beam welding
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部