Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear ...A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.展开更多
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from ...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.展开更多
We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging o...We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.展开更多
In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally ...In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.展开更多
With the rapid development of Chinese petroleum industry, Oil production way of burning crude oil to produce steam need change. Heavy oil reservoir with thin layer or edgewater is unsuitable thermal recovery, electric...With the rapid development of Chinese petroleum industry, Oil production way of burning crude oil to produce steam need change. Heavy oil reservoir with thin layer or edgewater is unsuitable thermal recovery, electric heating leads to considerable electrical consumption, low injection water temperature decreases reservoir temperature and increased crude oil viscosity. The prolonged temperature difference break up reservoir pore throat cement and framework minerals. To improve high-capacity channel communication, we proposed geothermal oil recovery. Broad-sense abundant geothermal resources and existing injection water technique equipment are used, deep-seated high temperature liquid (oil-gas-water mixture) draws geothermal warming flowing layer to transit heat upward, decreases viscidity and increases fluidity. Reservoir temperature different offer geothermal fountain. Practicability process is analyzed. statistics and reservoir temperature variation analysis of Gudong Oilfield, Shengli Oilfield Company, SINOPEC, we have designed flow-chart concept for geothermal oil recovery, suggested drilling multi-branch well in heavy oil reservoir as injection-well, at the same position of geothermal fountain well, using free-pressure pump to inject hot liquid directly to aimed oil layer, made oil recovery in surrounding wells. It is proposed that geothermal oil recovery forerunner test should be first conducted in favorable blocks.展开更多
It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investm...It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.展开更多
A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, ...A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, one cooled by water, the other cooled by oil–water emulsion. The results of wet/dry cyclic accelerated corrosion test showed that the anti-rust property of rebar cooled by oil–water emulsion was better than that by water obviously. The results of OM, SEM and EPMA analysis indicated that these two scales contained three layers: an outer Fe_3O_4 layer, an intermediate Fe O layer with island-shaped pro-eutectoid Fe_3O_4, an inner eutectoid Fe_3O_4 layer. For the water cooled rebar, all three layers of oxide scale were relatively thin. Moreover, the scale had plenty of defects such as porosity, and crack. However, for the oil–water emulsion cooled rebar, all three layers of oxide scale were relatively thick and compact, which played an important role in protecting the rebar from atmospheric rust.展开更多
Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally ...Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally injected intermittently with water. This mode of injection is called water-alternating-gas (WAG). This study deals with a new immiscible water alternating gas (IWAG) EOR technique, “hot IWAG” which includes combination of thermal, solvent and sweep techniques. In the proposed method CO2 will be superheated above the reservoir temperature and instead of normal temperature water, hot water will be used. Hot CO2 and hot water will be alternatively injected into the sand packs. A laboratory test was conducted on the fractured and conventional sand packs. Slugs of water and CO2 with a low and constant rate were injected into the sand packs alternatively; slug size was 0.05 PV. Recovery from each sand pack was monitored and after that hot water and hot CO2 were injected alternatively under the same conditions and increased oil recovery from each sand pack and breakthrough were measured. Experimental results showed that the injection of hot WAG could significantly recover residual oil after WAG injection in conventional and fractured sand packs.展开更多
[Objectives]The differences in indices of different peanut oil were found out by analyzing the quality of peanut oil obtained by different oil-making processes.[Methods]The effects of different oil-making processes on...[Objectives]The differences in indices of different peanut oil were found out by analyzing the quality of peanut oil obtained by different oil-making processes.[Methods]The effects of different oil-making processes on the quality of peanut oil were analyzed and compared through the determination of the main physicochemical indices,V_(E) contents and fatty acid compositions of peanut oil obtained by cold pressing,hot pressing and leaching and refining.[Results]The leached refined peanut oil had the lightest color and the lightest fragrance;the hot-pressed peanut oil had the highest V_(E) content;the refractive index,relative density and main fatty acid compositions of the three kinds of peanut oil had no significant differences;and there were trans-fatty acids in the leached refined peanut oil,and the trans-fatty acid contents in the leached refined fresh and aged peanut oil were 1.90%and 4.39%,respectively.The trans-fatty acid content is expected to be a characteristic index to distinguish pressed peanut oil from leached refined peanut oil.[Conclusions]This study can provide a theoretical basis for distinguishing and identifying peanut oil obtained from different oil-making processes.展开更多
以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X...以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X射线衍射仪、扫描电子显微镜、热重分析仪等对包覆沥青的微观形貌、结构和组成进行分析。结果表明,相较于空气氧化法和催化交联聚合法,改性和热聚合所制备的200^(#)包覆沥青的QI和灰分质量分数显著降低,产品性能优异;微观结构和组成分析表明,包覆沥青分子具有较高的碳质量分数和芳香缩合度,分子中类石墨结构增多,碳微晶排列规整,热重分析结果进一步证实其热稳定性显著增强,可用作锂电负极包覆材料。展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
文摘A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China under Contract No. 20576087.
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.
基金supported by National Natural Science Foundation of China(51904327,51774311)Natural Science Foundation of Shandong Province of China(ZR2017MEE022)+1 种基金China Postdoctoral Science Foundation(2019TQ0354,2019M662468)Qingdao postdoctoral researchers applied research project.
文摘We developed a predictive model for the pipeline friction in the 520-730 m^3/h transmission range using the multi-layerperceptron-back-propagation(MLP-BP)method and analyzing the unit friction data after the pigging of a hot oil pipeline.In view of the shortcomings of the MLP-BP model,two optimization methods,the genetic algorithm(GA)and mind evolutionary algorithm(MEA),were used to optimize the MLP-BP model.The research results were applied to the standard friction prediction of three sections of a hot oil pipeline.After the GA and MEA optimizations,the average errors of the three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA,and the mean-square errors were 0.083 and 0.067,respectively.The MEA-BP model prediction results were characterized by high precision and small dispersion.The MEABP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging.The analysis results showed that the model can effectively guide pipe pigging and optimization.There was little sample data for the individual transmission and oil temperature steps because the model was based on actual production data modeling and analysis,which may have affected the accuracy and adaptability of the model.
基金supported by the Fundamental Research Funds for the Central Universities (No. 27R1015025A)the Natural Science Foundation of Shandong Province,China(Grant No. 05J10150300)
文摘In heavy oil production,the loss of energy to ambient surroundings decreases the temperature of the heavy oil flowing upwards in a vertical wellbore,which increases the oil viscosity and the oil may not flow normally in the wellbore.Therefore,it is necessary to lower the heavy oil viscosity by heating methods to allow it to be lifted easily.Heating of heavy oil in an oil well is achieved by circulating hot water in annuli in the well(tubing-casing annulus,casing-casing annulus).In this paper,based on heat transfer principles and fluid flow theory,a model is developed for produced fluids and hot water flowing in a vertical wellbore.The temperature and pressure of produced fluids and hot water in the wellbore are calculated and the effect of hot water on heavy oil temperature is analyzed.Calculated results show that the hot water circulating in the annuli may effectively heat the heavy oil in the tubing,so as to significantly reduce both oil viscosity and resistance to oil flow.
文摘With the rapid development of Chinese petroleum industry, Oil production way of burning crude oil to produce steam need change. Heavy oil reservoir with thin layer or edgewater is unsuitable thermal recovery, electric heating leads to considerable electrical consumption, low injection water temperature decreases reservoir temperature and increased crude oil viscosity. The prolonged temperature difference break up reservoir pore throat cement and framework minerals. To improve high-capacity channel communication, we proposed geothermal oil recovery. Broad-sense abundant geothermal resources and existing injection water technique equipment are used, deep-seated high temperature liquid (oil-gas-water mixture) draws geothermal warming flowing layer to transit heat upward, decreases viscidity and increases fluidity. Reservoir temperature different offer geothermal fountain. Practicability process is analyzed. statistics and reservoir temperature variation analysis of Gudong Oilfield, Shengli Oilfield Company, SINOPEC, we have designed flow-chart concept for geothermal oil recovery, suggested drilling multi-branch well in heavy oil reservoir as injection-well, at the same position of geothermal fountain well, using free-pressure pump to inject hot liquid directly to aimed oil layer, made oil recovery in surrounding wells. It is proposed that geothermal oil recovery forerunner test should be first conducted in favorable blocks.
基金funded by the National Natural Science Foundation of China(NO.51704236)the Graduate Innovation and Practice Ability Development Program of Xi’an Shiyou University(NO.YCS19113037).
文摘It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.
基金Project(51374069) supported by the National Natural Science Foundation of China
文摘A method was proposed to improve the anti-rust property of hot rolled rebar, which uses oil–water emulsion cooling instead of water cooling after hot rolling. The experiments were carried out by two cooling methods, one cooled by water, the other cooled by oil–water emulsion. The results of wet/dry cyclic accelerated corrosion test showed that the anti-rust property of rebar cooled by oil–water emulsion was better than that by water obviously. The results of OM, SEM and EPMA analysis indicated that these two scales contained three layers: an outer Fe_3O_4 layer, an intermediate Fe O layer with island-shaped pro-eutectoid Fe_3O_4, an inner eutectoid Fe_3O_4 layer. For the water cooled rebar, all three layers of oxide scale were relatively thin. Moreover, the scale had plenty of defects such as porosity, and crack. However, for the oil–water emulsion cooled rebar, all three layers of oxide scale were relatively thick and compact, which played an important role in protecting the rebar from atmospheric rust.
文摘Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally injected intermittently with water. This mode of injection is called water-alternating-gas (WAG). This study deals with a new immiscible water alternating gas (IWAG) EOR technique, “hot IWAG” which includes combination of thermal, solvent and sweep techniques. In the proposed method CO2 will be superheated above the reservoir temperature and instead of normal temperature water, hot water will be used. Hot CO2 and hot water will be alternatively injected into the sand packs. A laboratory test was conducted on the fractured and conventional sand packs. Slugs of water and CO2 with a low and constant rate were injected into the sand packs alternatively; slug size was 0.05 PV. Recovery from each sand pack was monitored and after that hot water and hot CO2 were injected alternatively under the same conditions and increased oil recovery from each sand pack and breakthrough were measured. Experimental results showed that the injection of hot WAG could significantly recover residual oil after WAG injection in conventional and fractured sand packs.
文摘[Objectives]The differences in indices of different peanut oil were found out by analyzing the quality of peanut oil obtained by different oil-making processes.[Methods]The effects of different oil-making processes on the quality of peanut oil were analyzed and compared through the determination of the main physicochemical indices,V_(E) contents and fatty acid compositions of peanut oil obtained by cold pressing,hot pressing and leaching and refining.[Results]The leached refined peanut oil had the lightest color and the lightest fragrance;the hot-pressed peanut oil had the highest V_(E) content;the refractive index,relative density and main fatty acid compositions of the three kinds of peanut oil had no significant differences;and there were trans-fatty acids in the leached refined peanut oil,and the trans-fatty acid contents in the leached refined fresh and aged peanut oil were 1.90%and 4.39%,respectively.The trans-fatty acid content is expected to be a characteristic index to distinguish pressed peanut oil from leached refined peanut oil.[Conclusions]This study can provide a theoretical basis for distinguishing and identifying peanut oil obtained from different oil-making processes.
文摘以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X射线衍射仪、扫描电子显微镜、热重分析仪等对包覆沥青的微观形貌、结构和组成进行分析。结果表明,相较于空气氧化法和催化交联聚合法,改性和热聚合所制备的200^(#)包覆沥青的QI和灰分质量分数显著降低,产品性能优异;微观结构和组成分析表明,包覆沥青分子具有较高的碳质量分数和芳香缩合度,分子中类石墨结构增多,碳微晶排列规整,热重分析结果进一步证实其热稳定性显著增强,可用作锂电负极包覆材料。