Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra...Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.展开更多
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cle...Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.展开更多
A two dimension unsteady heat transfer model is established for rectangular billet casting. Solidification process of liquid steel in secondary cooling zone was analyzed using direct difference method. The influence o...A two dimension unsteady heat transfer model is established for rectangular billet casting. Solidification process of liquid steel in secondary cooling zone was analyzed using direct difference method. The influence of operation parameters including casting speed and temperature of liquid steel was investigated. Experimental results have been used for increasing the casting speed.展开更多
A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg-Landau (TDGL) equation under cer...A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg-Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential. The modified Korteweg- de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink antikink solution is also obtained. The relation between the TDGL equation and the mKdV equation is shown. The simulation result is consistent with the nonlinear analytical result.展开更多
The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave h...The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.展开更多
The M S=7.3 earthquake of June, 8 1993, off the eastern coast of Kamchatka was very complicated in the rupture history. The rupture feature of this event was discussed by the broadband waveform modelling metho...The M S=7.3 earthquake of June, 8 1993, off the eastern coast of Kamchatka was very complicated in the rupture history. The rupture feature of this event was discussed by the broadband waveform modelling method as well as the combining analysis on the subevent stack and the quasi time difference. The results suggest that the rupture propagation of the event was in a strong unidirection and its main rupture processes can be expressed as: rupture nucleation→NEE→near east by north→near east by south→stop, from deep to shallow.展开更多
不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障...不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。展开更多
针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根...针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。展开更多
基金funded by National Science and Technology Major Projects(2017ZX05009004,2016ZX05058003)Beijing Natural Science Foundation(2173061)and State Energy Center for Shale Oil Research and Development(G5800-16-ZS-KFNY005).
文摘Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.
基金TheNationalNaturalScienceFoundationofChina (No .5 9776 0 2 5 )andtheHi TechResearchandDevelopmentProgramofChina (S 86 3No.2 0 0 1AA3330 40 ) )
文摘Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
文摘A two dimension unsteady heat transfer model is established for rectangular billet casting. Solidification process of liquid steel in secondary cooling zone was analyzed using direct difference method. The influence of operation parameters including casting speed and temperature of liquid steel was investigated. Experimental results have been used for increasing the casting speed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072117,10802042,and 60904068)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y6100023)+1 种基金the Natural Science Foundation of Ningbo City(Grant No.2009B21003)K.C.Wong Magna Fund in Ningbo University
文摘A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg-Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential. The modified Korteweg- de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink antikink solution is also obtained. The relation between the TDGL equation and the mKdV equation is shown. The simulation result is consistent with the nonlinear analytical result.
文摘The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.
文摘The M S=7.3 earthquake of June, 8 1993, off the eastern coast of Kamchatka was very complicated in the rupture history. The rupture feature of this event was discussed by the broadband waveform modelling method as well as the combining analysis on the subevent stack and the quasi time difference. The results suggest that the rupture propagation of the event was in a strong unidirection and its main rupture processes can be expressed as: rupture nucleation→NEE→near east by north→near east by south→stop, from deep to shallow.
文摘不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。
文摘针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。