期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
1
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin YU Han YUAN Yilong ZHU Huixing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期618-632,共15页
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor... As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%. 展开更多
关键词 natural gas hydrate numerical simulation fluctuation characteristics depressurization production production well optimization
下载PDF
Optimization of Well Position and Sampling Frequency for Groundwater Monitoring and Inverse Identification of Contamination Source Conditions Using Bayes’Theorem 被引量:1
2
作者 Shuangsheng Zhang Hanhu Liu +3 位作者 Jing Qiang Hongze Gao Diego Galar Jing Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第5期373-394,共22页
Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including sour... Coupling Bayes’Theorem with a two-dimensional(2D)groundwater solute advection-diffusion transport equation allows an inverse model to be established to identify a set of contamination source parameters including source intensity(M),release location(0 X,0 Y)and release time(0 T),based on monitoring well data.To address the issues of insufficient monitoring wells or weak correlation between monitoring data and model parameters,a monitoring well design optimization approach was developed based on the Bayesian formula and information entropy.To demonstrate how the model works,an exemplar problem with an instantaneous release of a contaminant in a confined groundwater aquifer was employed.The information entropy of the model parameters posterior distribution was used as a criterion to evaluate the monitoring data quantity index.The optimal monitoring well position and monitoring frequency were solved by the two-step Monte Carlo method and differential evolution algorithm given a known well monitoring locations and monitoring events.Based on the optimized monitoring well position and sampling frequency,the contamination source was identified by an improved Metropolis algorithm using the Latin hypercube sampling approach.The case study results show that the following parameters were obtained:1)the optimal monitoring well position(D)is at(445,200);and 2)the optimal monitoring frequency(Δt)is 7,providing that the monitoring events is set as 5 times.Employing the optimized monitoring well position and frequency,the mean errors of inverse modeling results in source parameters(M,X0,Y0,T0)were 9.20%,0.25%,0.0061%,and 0.33%,respectively.The optimized monitoring well position and sampling frequency canIt was also learnt that the improved Metropolis-Hastings algorithm(a Markov chain Monte Carlo method)can make the inverse modeling result independent of the initial sampling points and achieves an overall optimization,which significantly improved the accuracy and numerical stability of the inverse modeling results. 展开更多
关键词 Contamination source identification monitoring well optimization Bayes’Theorem information entropy differential evolution algorithm Metropolis Hastings algorithm Latin hypercube sampling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部