During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas...During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling.展开更多
An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel ...An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi2Te4, by alternate growth of a Bi2Te3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.展开更多
The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxal...The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxalic acid-assisted method was developed for the in situ fabrication of a 3D lasagna-like Fe-N-doped CNTs-G framework (LMFC) from a precursor designed at the molecular level. The well-organized architecture of LMFC was constructed by multi-dimensionally interconnected graphene and CNTs which derived from porous graphene sheets, to form a fundamentally robust and hierarchical porous structure, as well as favorable conductive networks. The impressive oxygen reduction reaction (ORR) performances in both alkaline and acidic conditions helped confirm the significance of this technically favorable morphological structure. This product was also the subject of research for the exploration of decisive effects on the performance of ORR catalysts with reasonable control variables. The present work further advances the construction of novel 3D carbon architectures via practical and economic routes.展开更多
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.52104012)the Key Program of the National Natural Science Foundation of China(Grant No.51734010)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M693494)Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH011)the Key Natural Science Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region(Grant No.XJEDU2021I028)。
文摘During deepwater managed pressure drilling(MPD),the gas kick may occur in abnormally high-pressure formations.If the traditional well control method is adopted,the treatment time is long and the advantage of early gas kick detection of MPD is lost.The dynamic managed pressure well-control(MPWC)method can be used to rapidly treat gas kick in deepwater MPD.In this paper,considering the effect of large-variable-diameter annulus and complex wellbore temperature in deepwater drilling,a simplified model of non-isothermal gas-liquid two-phase flow was established for dynamic deepwater MPWC simulation.Using this model,the response characteristics of outlet flow and wellhead backpressure were investigated.The results indicated that the gas fraction,outlet liquid flow rate,pit gain and wellhead backpressure presented complex alternating characteristics when gas moved upwards in the wellbore due to the large-variable-diameter annulus.The outlet liquid flow rate would be lower than the inlet flow rate and the pit gain would decrease before the gas moved to the wellhead.The variation trend of the wellhead backpressure was consistent with that of the pit gain.When the gas-liquid mixture passed through the choke,the expansion or compression of the gas caused part of the choke pressure drop to be supplemented or unloaded,delaying the response rate of the wellhead backpressure.The wellbore temperature,borehole diameter and seawater depth had different effects on outlet flow rate,pit gain and wellhead backpressure.This research could provide a new idea for well control methods in deepwater managed pressure drilling.
基金Supported by the Ministry of Science and Technology of Chinathe National Science Foundation of Chinathe Beijing Advanced Innovation Center for Future Chip(ICFC)
文摘An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi2Te4, by alternate growth of a Bi2Te3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.
基金Acknowledgements Financial supports from the National Natural Science Foundation of China (Nos. 21622308, 91534114, and 21376208), the the China Ministry of Science and Technology (No. 2016YFA0202900), the Fundamental Research Funds for the Central Universities (No. 2016FZA3006), and the Partner Group Program of the Zhejiang University and the Max-Planck Society are appreciated greatly.
文摘The scalable preparation of multi-functional three-dimensional (3D) carbon nanotubes and graphene (CNTs-G) hybrids via a well-controlled route is urgently required and challenging. Herein, an easily operated, oxalic acid-assisted method was developed for the in situ fabrication of a 3D lasagna-like Fe-N-doped CNTs-G framework (LMFC) from a precursor designed at the molecular level. The well-organized architecture of LMFC was constructed by multi-dimensionally interconnected graphene and CNTs which derived from porous graphene sheets, to form a fundamentally robust and hierarchical porous structure, as well as favorable conductive networks. The impressive oxygen reduction reaction (ORR) performances in both alkaline and acidic conditions helped confirm the significance of this technically favorable morphological structure. This product was also the subject of research for the exploration of decisive effects on the performance of ORR catalysts with reasonable control variables. The present work further advances the construction of novel 3D carbon architectures via practical and economic routes.