Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water e...Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth.展开更多
In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency anal...In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural lan...A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology.展开更多
The device construction and working principle of Calvet type heat conductive microcalorimetry are generally introduced in this paper. Based on previous work, we design a reactor vessel and its electrical calibration e...The device construction and working principle of Calvet type heat conductive microcalorimetry are generally introduced in this paper. Based on previous work, we design a reactor vessel and its electrical calibration equipment according to our special study systems. The heat constant of our improved microalorimetry is gotten by means of electrical calibration on the basis of Tian's equation. The results gotten by integration method are identical with ones gotten by peak method. It shows that our improved device works well enough to develop further studies.展开更多
This paper is focused on calibration of an intelligent network simulation model (INS1M) with reallife transportation network to analyse the INSIM's feasibility in simulating commuters' travel choice behaviour unde...This paper is focused on calibration of an intelligent network simulation model (INS1M) with reallife transportation network to analyse the INSIM's feasibility in simulating commuters' travel choice behaviour under the influence of real-time integrated multimodal traveller information (IMTI). A transportation network model for the central and western areas of Singapore was simulated in PARAMICS and integrated with INSIM expert system by means of an application programming interface to form the INSIM. Upon calibration, INSIM was able to realistically present complicated scenarios in which real-time IMTI was provided to commuters and the network performance measures being recorded.展开更多
Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide metho...Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide methods to detect the position of car accident. The models consider GPS/INS-based navigation algorithm, calibration of navigational sensors, a de-nosing method as long as vehicle accident, expressed by a set of raw measurements which are obtained from various environmental sensors. In addition, the location-based accident detection model is tested in different scenarios. The results illustrate that under harsh environments with no GPS signal, location of accident can be detected. Also results confirm that calibration of sensors has an important role in position correction algorithm. Finally, the results present that the proposed accident detection algorithm can recognize accidents and related its positions.展开更多
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-406-3)the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2005CB121108).
文摘Various calibration methods have been propounded to determine profiles of apparent bulk soil electrical conductivity (ECa) and soil electrical conductivity of a saturated soil paste extract (ECe) or a 1:5 soil water extract (EC1:5) using an electromagnetic induction instrument (EM38). The modeled coefficients, one of the successful and classical methods hitherto, were chosen to calibrate the EM38 measurements of the inverted salinity profiles of characteristic coastal saline soils at selected sites of Xincao Farm, Jiangsu Province, China. However, this method required three parameters for each depth layer. An integration approach, based on an exponential decay profile model, was proposed and the model was fitted to all the calibration sites. The obtained model can then be used to predict EC1:5 at a certain depth from electromagnetic measurements made using the EM38 device positioned in horizontal and vertical positions at the soil surface. This exponential decay model predicted the EC1:5 well according to the results of a one-way analysis of variance, and the further comparison indicated that the modeled coefficients appeared to be slightly superior to, but not statistically different from, this exponential decay model. Nevertheless, this exponential decay model was more significant and practical because it depended on less empirical parameters and could be used to perform point predictions of EC1:5 continuously with depth.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2011YYL128)the CNPC Innovation Foundation(GrantNo.2012D-5006-0103)the Ministry of Land and Resources special funds for scientific research on public cause(Grant No.201311107)
文摘In order to solve the problems of the fine division of sedimentary sequence cycles and their change in two-dimensional space as well as lateral extension contrast, we developed a method of wavelet depth-frequency analysis. The single signal and composite signal of different Milankovitch cycles are obtained by numerical simulation. The simulated composite signal can be separated into single signals of a single frequency cycle. We also develop a well-seismic calibration insertion technology which helps to realize the calibration from the spectrum characteristics of a single well to the seismic profile. And then we determine the change and distribution characteristics of spectrum cycles in the two-dimensional space. It points out the direction in determining the variations of the regional sedimentary sequence cycles, underground strata structure and the contact relationship.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
基金supported by the auspices of the National Natural Science Foundation of China (Grant Nos. 41471331, 41601408, 41506111)
文摘A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology.
文摘The device construction and working principle of Calvet type heat conductive microcalorimetry are generally introduced in this paper. Based on previous work, we design a reactor vessel and its electrical calibration equipment according to our special study systems. The heat constant of our improved microalorimetry is gotten by means of electrical calibration on the basis of Tian's equation. The results gotten by integration method are identical with ones gotten by peak method. It shows that our improved device works well enough to develop further studies.
文摘This paper is focused on calibration of an intelligent network simulation model (INS1M) with reallife transportation network to analyse the INSIM's feasibility in simulating commuters' travel choice behaviour under the influence of real-time integrated multimodal traveller information (IMTI). A transportation network model for the central and western areas of Singapore was simulated in PARAMICS and integrated with INSIM expert system by means of an application programming interface to form the INSIM. Upon calibration, INSIM was able to realistically present complicated scenarios in which real-time IMTI was provided to commuters and the network performance measures being recorded.
文摘Continuous vehicle tracking as well as detecting accidents, are significant services that are needed by many industries including insurance and vehicle rental companies. The main goal of this paper is to provide methods to detect the position of car accident. The models consider GPS/INS-based navigation algorithm, calibration of navigational sensors, a de-nosing method as long as vehicle accident, expressed by a set of raw measurements which are obtained from various environmental sensors. In addition, the location-based accident detection model is tested in different scenarios. The results illustrate that under harsh environments with no GPS signal, location of accident can be detected. Also results confirm that calibration of sensors has an important role in position correction algorithm. Finally, the results present that the proposed accident detection algorithm can recognize accidents and related its positions.