期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
非线性扰动Klein-Gordon方程初值问题的渐近理论
1
作者 甘在会 张健 《应用数学和力学》 EI CSCD 北大核心 2005年第7期833-839,共7页
 在二维空间中研究一类非线性扰动Klein_Gordon方程初值问题解的渐近理论.首先利用压缩映象原理,结合一些先验估计式及Bessel函数的收敛性,根据Klein_Gordon方程初值问题的等价积分方程,在二次连续可微空间中得到了初值问题解的适定性...  在二维空间中研究一类非线性扰动Klein_Gordon方程初值问题解的渐近理论.首先利用压缩映象原理,结合一些先验估计式及Bessel函数的收敛性,根据Klein_Gordon方程初值问题的等价积分方程,在二次连续可微空间中得到了初值问题解的适定性;其次,利用扰动方法构造了初值问题的形式近似解,并得到了该形式近似解的渐近合理性;最后给出了所得渐近理论的一个应用。 展开更多
关键词 KLEIN-GORDON方程 适定性 渐近理论 形式近似解 应用
下载PDF
非线性热传导方程的渐近理论
2
作者 蒋良军 《南京晓庄学院学报》 2005年第5期1-8,共8页
本文采用整体迭代法,研究非线性热传导方程Cauahy问题的渐近理论,在Sobolev空间中,空间维数n 1时,证明了初值问题的适定性和形式近似解的合理性。
关键词 热传导方程 渐近理论 适定性
下载PDF
On Well-posed Mutually Nearest and Mutually Furthest Point Problems in Banach Spaces 被引量:3
3
作者 ChongLI RenXingNI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第1期147-156,共10页
Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let denote the space of all non-empty compact convex subsets of X endowed with ... Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let denote the space of all non-empty compact convex subsets of X endowed with the Hausdorff distance. Moreover, let denote the closure of the set . We prove that the set of all , such that the minimization (resp. maximization) problem min(A,G) (resp. max(A,G)) is well posed, contains a dense G δ-subset of , thus extending the recent results due to Blasi, Myjak and Papini and Li. 展开更多
关键词 Mutually nearest point Mutually furthest point Well posedness Dense G δ-subset
原文传递
On well posedness of best simultaneous approximation problems in Banach spaces 被引量:2
4
作者 李冲 《Science China Mathematics》 SCIE 2001年第12期1558-1570,共13页
The well posedness of best simultaneous approximation problems is considered. We establish the generic results on the well posedness of the best simultaneous approximation problems for any closed weakly compact nonemp... The well posedness of best simultaneous approximation problems is considered. We establish the generic results on the well posedness of the best simultaneous approximation problems for any closed weakly compact nonempty subset in a strictly convex Kadec Banach space. Further, we prove that the set of all points inE(G) such that the best simultaneous approximation problems are not well posed is a u- porous set inE(G) whenX is a uniformly convex Banach space. In addition, we also investigate the generic property of the ambiguous loci of the best simultaneous approximation. 展开更多
关键词 well posedness best simultaneous approximation a-porous set ambiguous lad
原文传递
Global Well-posedness for gKdV-3 in Sobolev Spaces of Negative Index
5
作者 Zhi Fei ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第5期857-866,共10页
The initial value problem for the generalized Korteweg-deVries equation of order three on the line is shown to be globally well posed for rough data. Our proof is based on the multilinear estimate and the I-method int... The initial value problem for the generalized Korteweg-deVries equation of order three on the line is shown to be globally well posed for rough data. Our proof is based on the multilinear estimate and the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao. 展开更多
关键词 KdV equation Global well posedness I-METHOD Multilinear estimate
原文传递
Fluid Structure Interaction Problems:the Necessity of a Well Posed,Stable and Accurate Formulation
6
作者 Jan Nordstrom Sofia Eriksson 《Communications in Computational Physics》 SCIE 2010年第10期1111-1138,共28页
We investigate problems of fluid structure interaction type and aim for a formulation that leads to a well posed problem and a stable numerical procedure.Our first objective is to investigate if the generally accepted... We investigate problems of fluid structure interaction type and aim for a formulation that leads to a well posed problem and a stable numerical procedure.Our first objective is to investigate if the generally accepted formulations of the fluid structure interaction problem are the only possible ones.Our second objective is to derive a stable numerical coupling.To accomplish that we will use a weak coupling procedure and employ summation-by-parts operators and penalty terms.We compare the weak coupling with other common procedures.We also study the effect of high order accurate schemes.In multiple dimensions this is a formidable task and we start by investigating the simplest possible model problem available.As a flow model we use the linearized Euler equations in one dimension and as the structure model we consider a spring. 展开更多
关键词 Fluid structure interaction well posed finite difference high accuracy STABILITY
原文传递
LOCAL EXISTENCE THEOREM FOR FIRST ORDER SEMILINEAR HYPERBOLIC SYSTEMS IN SEVERAL SPACE DIMENSIONS
7
作者 ZHOU YI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1997年第2期223-232,共10页
This paper studies first order semilinear hyperbolic systems in n(n≥2)space dimensions.Under the hypothesis that the system satisfies so called`null condition',the local well posedness for its Cauchy problem with... This paper studies first order semilinear hyperbolic systems in n(n≥2)space dimensions.Under the hypothesis that the system satisfies so called`null condition',the local well posedness for its Cauchy problem with initial data in H n-12 is proved. 展开更多
关键词 Semilinear hyperbolic systems Local well posedness Cauchy problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部