期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
高效时空同步四阶熵稳定格式
1
作者 陈雪 郑素佩 +1 位作者 张成治 汪浏博 《力学季刊》 CAS CSCD 北大核心 2023年第4期967-977,共11页
求解双曲守恒律方程的高阶半离散熵稳定方法在时间方向上采用Runge-Kutta型方法时,算法的计算效率较低,Lax-Wendroff型时间离散方法为这一问题的解决提供了新思路.将WENO(Weighted Essentially Non-Oscillatory)型四阶熵稳定格式与Lax-W... 求解双曲守恒律方程的高阶半离散熵稳定方法在时间方向上采用Runge-Kutta型方法时,算法的计算效率较低,Lax-Wendroff型时间离散方法为这一问题的解决提供了新思路.将WENO(Weighted Essentially Non-Oscillatory)型四阶熵稳定格式与Lax-Wendroff型两步四阶时间离散方法相结合求解双曲守恒律方程,时空同步可达到四阶精度.相较于流行的Runge-Kutta型时间离散方法,Lax-Wendroff型两步四阶方法只需两步就可以达到四阶精度,从而可提高计算效率.多个不同类型双曲型方程数值结果表明:新的耦合算法计算效率有明显提高,一维问题计算效率至少提高35%,二维问题计算效率至少提高39%,且新算法依旧具有熵稳定性,数值结果分辨率高. 展开更多
关键词 熵稳定 Lax-Wendroff型时间离散 两步四阶方法 双曲守恒律方程
下载PDF
Numerical Simulation of Diffusion Type Traffic Flow Model Using Second-Order Lax-Wendroff Scheme Based on Exponential Velocity Density Function
2
作者 Mojammel Haque Mariam Sultana Laek Sazzad Andallah 《American Journal of Computational Mathematics》 2023年第3期398-411,共14页
In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which prov... In order to control traffic congestion, many mathematical models have been used for several decades. In this paper, we study diffusion-type traffic flow model based on exponential velocity density relation, which provides a non-linear second-order parabolic partial differential equation. The analytical solution of the diffusion-type traffic flow model is very complicated to approximate the initial density of the Cauchy problem as a function of x from given data and it may cause a huge error. For the complexity of the analytical solution, the numerical solution is performed by implementing an explicit upwind, explicitly centered, and second-order Lax-Wendroff scheme for the numerical solution. From the comparison of relative error among these three schemes, it is observed that Lax-Wendroff scheme gives less error than the explicit upwind and explicit centered difference scheme. The numerical, analytical analysis and comparative result discussion bring out the fact that the Lax-Wendroff scheme with exponential velocity-density relation of diffusion type traffic flow model is suitable for the congested area and shows a better fit in traffic-congested regions. 展开更多
关键词 Traffic Congestion Diffusion Type Traffic Flow Model Analytical Solution Numerical Solution Lax-Wendroff Scheme
下载PDF
一类时滞弱奇异Wendroff型积分不等式 被引量:9
3
作者 梁英 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期493-496,共4页
研究了一类具有时滞的弱奇异的Wendroff型积分不等式,给出了此不等式中未知函数的估计,所得结果推广了过去关于弱奇异Wendroff型积分不等式的相关结果,并用实例给出了解的估计.
关键词 积分不等式 弱奇异 Wendroff型
下载PDF
HWENO-LW格式与浸入边界法在笛卡尔网格中的应用
4
作者 王镇明 朱君 赵宁 《江苏师范大学学报(自然科学版)》 CAS 2018年第3期69-73,共5页
由于Lax-Wendroff时间离散的经典高精度有限体积格式对网格质量要求较高,不能直接用于数值模拟计算区域内含有复杂几何外形的物体绕流问题,而浸入边界法能在简单的笛卡尔网格中有效处理复杂物面边界条件,因此,在笛卡尔网格中构造高精度L... 由于Lax-Wendroff时间离散的经典高精度有限体积格式对网格质量要求较高,不能直接用于数值模拟计算区域内含有复杂几何外形的物体绕流问题,而浸入边界法能在简单的笛卡尔网格中有效处理复杂物面边界条件,因此,在笛卡尔网格中构造高精度Lax-Wendroff时间离散的有限体积HWENO(Hermite weighted essentially nonoscillatory)格式,并结合浸入边界法求解上述问题.文中采用的Lax-Wendroff时间离散相比于经典的Runge-Kutta时间离散方法能更好地提高格式的计算效率,在解的光滑区域达到时空一致高阶精度.最后,通过数值算例验证该方法的有效性. 展开更多
关键词 HWENO格式 Lax-Wendroff时间离散 浸入边界法 笛卡尔网格
下载PDF
Estimation of Thermal Pollution Using Numerical Simulation of Energy Equation Coupled with Viscous Burgers’ Equation
5
作者 Prokriti Biswas Laek Sazzad Andallah Khandaker Md. Eusha-Bin-Hafiz 《American Journal of Computational Mathematics》 2022年第3期306-313,共8页
In this paper, we implement energy equation coupled with viscous Burgers’ equation as a mathematical model for the estimation of thermal pollution of river water. The model is a nonlinear system of partial differenti... In this paper, we implement energy equation coupled with viscous Burgers’ equation as a mathematical model for the estimation of thermal pollution of river water. The model is a nonlinear system of partial differential equations (PDEs) that read as an initial and boundary value problem (IBVP). For the numerical solution of the IBVP, we investigate an explicit second-order Lax- Wendroff type scheme for nonlinear parabolic PDEs. We present the numerical solutions graphically as a temperature profile, which shows good qualitative agreement with natural phenomena of heat transfer. We estimate the thermal pollution of water caused by industrialization on the bank of a river. 展开更多
关键词 Viscous Burgers’ Equation Energy Equation Heat Transfer Lax-Wendroff Type Scheme Thermal Pollution
下载PDF
SOME INTEGRAL INEQUALITIES IN N INDEPENDENT VARIABLES
6
作者 杨恩浩 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1994年第2期158-168,共11页
Some new linear and nonlinear integral inequalities of Volterra-type in n independent variables are established. They improve and contain the main results of A. Corduneanu[7] which in turn extend a number of known res... Some new linear and nonlinear integral inequalities of Volterra-type in n independent variables are established. They improve and contain the main results of A. Corduneanu[7] which in turn extend a number of known results in the literature. An application to certain initial value problem of partial differential equation is also indicated. 展开更多
关键词 Integral inequality volterra-type wendroff-type N-variable
全文增补中
HERMITE WENO SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS FOR HAMILTON-JACOBI EQUATIONS 被引量:3
7
作者 Jianxian Qiu 《Journal of Computational Mathematics》 SCIE EI CSCD 2007年第2期131-144,共14页
In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reco... In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method. 展开更多
关键词 WENO scheme Hermite interpolation Hamilton-Jacobi equation Lax-Wendroff type time discretization High order accuracy.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部