期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Geochemistry of the Cenozoic Potassic Volcanic Rocks in the West Kunlun Mountains and Constraints on Their Sources 被引量:4
1
作者 ZHANGZhaochong XIAOXuchang +2 位作者 WANGJun WANGYong LUOZhaohua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第4期912-920,共9页
The geochemical characteristics of the Cenozoic volcanic rocks from the north Pulu, east Pulu and Dahongliutan regions in the west Kunlun Mountains are somewhat similar as a whole. However, the volcanic rocks from the... The geochemical characteristics of the Cenozoic volcanic rocks from the north Pulu, east Pulu and Dahongliutan regions in the west Kunlun Mountains are somewhat similar as a whole. However, the volcanic rocks from the Dahongliutan region in the south belt are geochemically distinguished from those in the Pulu region (including the north and east Pulu) of the north belt. The volcanic rocks of the Dahongliutan region are characterized by relatively low TiO2 abundance, but more enrichment in alkali, much more enrichment in light rare earth elements and large ion lithosphile elements than those from the Pulu region. Compared with the Pulu region, volcanic rocks from the Dahongliutan region have relatively low 87Sr/86Sr ratios, and high εNd, 207Pb/204Pb and 208Pb/204Pb. Their trace elements and isotopic data suggest that they were derived from lithospheric mantle, consisting of biotite- and hornblende-bearing garnet lherzolite, which had undertaken metasomatism and enrichment. On the primitive mantle-normalized patterns, they display remarkably negative Nb and Ta anomalies, indicating the presence of early-stage subducted oceanic crust. The metasomatism and enrichment resulted from the fluid released from the crustal materials enclosed in the source region in response to the uplift of asthenospheric mantle. Based on the previous experiments it can be inferred that the thickness of the lithosphere ranges from 75 to 100 km prior to the generation of the magmas. However, the south belt differs from the north one by its thicker lithosphere and lower degree of partial melting. The different thickness of the lithosphere gives rise to corresponding variation of the degree of crustal contamination. The volcanic rocks in the south belt are much more influenced by crustal contamination. In view of the tectonic setting, the generation of potassic magmas is linked with the uplift of asthenosphere resulted from large-scale thinning of the lithosphere after the collision of Indian and Eurasian plates, whereas the thinning of the lithosphere may result from delamination. The potassic magmas mainly resulted from partial melting of lithosphere mantle caused by the uplift of asthenosphere. 展开更多
关键词 potassic magma lithospheric mantle asthenospheric mantle METASOMATISM west kunlun mountains
下载PDF
Discovery of Enclaves from Cenozoic PuluVolcanic Rocks in West Kunlun Mountains and ItsGeological Implications 被引量:1
2
作者 Zhang Zhaochong Xiao Xuchang Wang Jun Wang YongInstitute of Geology , Chinese Academy of Geological Sciences, Beijing 100037 《Journal of China University of Geosciences》 SCIE CSCD 2002年第1期30-34,共5页
In this paper, we present the occurrence and mineral components of the enclaves firstly discovered in the Cenozoic Pulu volcanic rocks in west Kunlun Mountains, and propose that the enclave is accumulated by fractiona... In this paper, we present the occurrence and mineral components of the enclaves firstly discovered in the Cenozoic Pulu volcanic rocks in west Kunlun Mountains, and propose that the enclave is accumulated by fractional crystallization within high-level magma chamber. In addition, the chemical compositions of its primary magma are calculated. The calculated compositions are similar to those of the Kangxiwa volcanic rocks that belong to the same volcanic belt in the Pulu volcanic region, suggesting their origin from the same source region. However, the temperatures and oxygen fugacity of magmas at high-level magma chamber decreased along with fractional crystallization. 展开更多
关键词 ENCLAVE fractional crystallization volcanic rocks west kunlun mountains.
下载PDF
The Frozen Soils and Devastating Characteristics of West Kunlun Mountains Pass M_S 8.1 Earthquake Area in 2001
3
作者 ChenYongming WangLanmin +2 位作者 DaiWei WangWeifeng DaiHuaguang 《Earthquake Research in China》 2004年第4期337-347,共11页
The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, d... The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with M S 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures, liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinistral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions. 展开更多
关键词 The west kunlun mountains Pass M S8.1 earthquake Frozen soil Devastating characteristics
下载PDF
Characteristics of Far-field Precursory Anomalies Before the M_S8.1 Earthquake in the West of Kunlun Mountains Pass
4
作者 Chen Yuhua Dong Zhiping +1 位作者 Wang Peiling Li Yongqiang 《Earthquake Research in China》 2009年第3期354-371,共18页
In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of... In this study, a number of typical precursory anomalies recorded by stations in Qinghai, Gansu, Sichuan, Xinjiang, Ningxia, Hebei and Shaanxi provinces and autonomous regions before the Ms8.1 earthquake in the west of Kunlun Mountains Pass are collected and checked. According to the standards of earthquake cases in China, the criteria of the precursory anomalies are determined, and 53 distinguished. The characteristics of these anomalies before the Ms S. 1 earthquake are analyzed, with results showing a very large earthquake affected area. The precursory anomalies recorded by instruments were 2900 km away from the epicenter, and according to the study in this paper, reached 2100 km away. The results also show that the anomalies present characteristics of long duration, multi-measurement items and large-amplitude variation. The authors believe that in large earthquake monitoring, attention should be paid to the variation of data over a large area, ranging up to thousands kilometers, with much denser earthquake observation networks. 展开更多
关键词 west of kunlun mountains Pass Ms8.1 earthquake Typical precursoryanomalies Analysis of anomaly characteristics
下载PDF
Ore-forming Conditions and Prospecting in the West Kunlun Area,Xinjiang, China 被引量:2
5
作者 DONGYongguan GUOKunyi +2 位作者 XIAOHuiliang ZHANGChuanlin ZHAOYu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期345-351,共7页
The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an import... The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits. 展开更多
关键词 ore-forming conditions mineralization collecting area orogenic zone west kunlun mountains
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部