期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Features of Seismicity in the Northeastern China Region and Their Relation to the Subduction of the Japan Sea Plate
1
作者 SunWenbin HeYueshi 《Earthquake Research in China》 2004年第4期373-384,共12页
Based on the analyses of grouped activity features of deep-focus (M≥6.0) and shallow-focus (M S≥5.0) earthquakes in the Northeast China region, the time-space correlation between deep focus “strong earthquake group... Based on the analyses of grouped activity features of deep-focus (M≥6.0) and shallow-focus (M S≥5.0) earthquakes in the Northeast China region, the time-space correlation between deep focus “strong earthquake group" and shallow focus “strong earthquake group" have been studied. The study was mainly on the characteristics of earthquake distribution on the collision zone between the west Pacific plate and the Eurasian plate and on its relations to the morphological feature of the western Pacific subduction zone. Moreover, emphasis was laid on analysis of the effect of the west Pacific plate on the seismicity of Eurasian plate. It is shown that in the region where the west Pacific plate subducts at low angles, the seismicity on the plate collision zone is strong, the effect of plate subduction on Eurasian continent is strong too, and the subduction zone is under a state of high compressional stress. However, in the region where the west Pacific plate subducts at high angles, the seismicity along the plate collision zone is weak, the effect of plate subduction on Eurasian continent is weak too, and the tensile stress produced by the subduction zone at depth is enhanced. We therefore propose that the seismicity in the northeast China region will enter an active period of shallow “strong earthquake group" in the future 10 years. In the period, six earthquakes of M S≥5.0 may occur. Therefore, the work of earthquake monitoring and prediction in this region shall be strengthened. 展开更多
关键词 Strong earthquake group west pacific plate Earthquake trend Northeast China
下载PDF
Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia 被引量:27
2
作者 Yigang XU Hongyan LI +3 位作者 Lubing HONG Liang MA Qiang MA Mingdao SUN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第7期869-886,共18页
The roles of subduction of the Pacific plate and the big mantle wedge(BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regardi... The roles of subduction of the Pacific plate and the big mantle wedge(BMW) in the evolution of east Asian continental margin have attracted lots of attention in past years. This paper reviews recent progresses regarding the composition and chemical heterogeneity of the BMW beneath eastern Asia and geochemistry of Cenozoic basalts in the region, with attempts to put forward a general model accounting for the generation of intraplate magma in a BMW system. Some key points of this review are summarized in the following.(1) Cenozoic basalts from eastern China are interpreted as a mixture of high-Si melts and low-Si melts. Wherever they are from, northeast, north or south China, Cenozoic basalts share a common low-Si basalt endmember, which is characterized by high alkali, Fe_2O_3~T and TiO_2 contents, HIMU-like trace element composition and relatively low ^(206)Pb/^(204)Pb compared to classic HIMU basalts. Their Nd-Hf isotopic compositions resemble that of Pacific Mantle domain and their source is composed of carbonated eclogites and peridotites. The high-Si basalt endmember is characterized by low alkali, Fe_2O_3~T and TiO_2 contents, Indian Mantle-type Pb-Nd-Hf isotopic compositions, and a predominant garnet pyroxenitic source. High-Si basalts show isotopic provinciality, with those from North China and South China displaying EM1-type and EM2-type components, respectively, while basalts from Northeast China containing both EM1-and EM2-type components.(2) The source of Cenozoic basalts from eastern China contains abundant recycled materials, including oceanic crust and lithospheric mantle components as well as carbonate sediments and water. According to their spatial distribution and deep seismic tomography, it is inferred that the recycled components are mostly from stagnant slabs in the mantle transition zone,whereas EM1 and EM2 components are from the shallow mantle.(3) Comparison of solidi of garnet pyroxenite, carbonated eclogite and peridotite with regional geotherm constrains the initial melting depth of high-Si and low-Si basalts at <100 km and^300 km, respectively. It is suggested that the BMW under eastern Asia is vertically heterogeneous, with the upper part containing EM1 and EM2 components and isotopically resembling the Indian mantle domain, whereas the lower part containing components derived from the Pacific mantle domain. Contents of H_2O and CO_2 decrease gradually from bottom to top of the BMW.(4) Melting of the BMW to generate Cenozoic intraplate basalts is triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone. 展开更多
关键词 Big mantle wedge Subduction of west pacific plate Cenozoic intraplate basalt Eastern China East Asia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部