期刊文献+
共找到155篇文章
< 1 2 8 >
每页显示 20 50 100
Interannual Meridional Displacement of the Upper-Tropospheric Westerly Jet over Western East Asia in Summer 被引量:1
1
作者 Sining LING Riyu LU +1 位作者 Hao LIU Yali YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1298-1308,共11页
The interannual meridional displacement of the upper-tropospheric westerly jet over the eastern portion of East Asia in summer has been well documented.This study,however,investigates the interannual meridional displa... The interannual meridional displacement of the upper-tropospheric westerly jet over the eastern portion of East Asia in summer has been well documented.This study,however,investigates the interannual meridional displacement of the westerly jet over the western portion of East Asia in summer,which is distinct from its eastern counterpart.The results show that the meridional displacement of the western East Asian jet shows a clear asymmetric feature;that is,there are remarkable differences between the southward and northward displacement of the jet.The southward displacement of the jet corresponds to suppressed convection in the tropical western North Pacific and Maritime Continent and enhanced convection in the equatorial Pacific,which can be explained by the warmer sea surfaces found in the northern Indian Ocean and equatorial eastern Pacific.These tropical anomalies somewhat resemble those associated with the eastern East Asian jet variability.However,the northward displacement of the western East Asian jet does not correspond to significant convection and SST anomalies in the entire tropics;instead,the northward displacement of the jet corresponds well to the positive phase of the Arctic Oscillation.Furthermore,the meridional displacement of the western jet has asymmetric impacts on rainfall and surface air temperatures in East Asia.When the western jet shifts northward,more precipitation is found over South China and Northeast China,and higher temperatures appear in northern China.By contrast,when the jet shifts southward,more precipitation appears over the East Asian rainy belt,including the Yangtze River valley,South Korea,and southern and central Japan and warmer temperatures are found South and Southeast Asia. 展开更多
关键词 westerly jet East Asia tropical convection Arctic Oscillation SUMMER
下载PDF
Ecological and hydrologic evolution history in the sensitive zone of both East Asian summer monsoon and Westerly since the Last Glacial Maximum
2
作者 LI Yu PENG Si-min 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1266-1281,共16页
The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and... The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and hydrologic cycle in this region on long-term timescales have not yet been clarified.In this study,we comprehensively study the hydrologic and ecological evolution history in the sensitive zone since the Last Glacial Maximum(LGM)by integrating surface sediments,paleoclimate records,TraCE-21ka transient simulations,and PMIP3-CMIP5 multi-model simulation.Results show that hydrologic and ecological proxies from surface sediments are significantly different from west to east and mainly divided into three sections:the monsoonaffected region in the eastern Qilian Mountains,the intersection region in the central Qilian Mountains,and the westerly-affected region in the western Qilian Mountains.Meanwhile,paleo-ecological and paleohydrologic reconstructions from the surroundings uncover a synchronous climate evolution that the EASM mainly controls the eastern Qilian Mountains and penetrates the central Qilian Mountains in monsoon intensity maximum,while the WW dominates the central and western Qilian Mountains on both glacial-interglacial and millennial timescales.The simulation results further bear out the glacial humid climate in the central and western Qilian Mountains caused by the enhanced WW,and the humidity maximum in the eastern Qilian Mountains controlled by the strong mid-Holocene monsoon.In general,east-west differences in climate pattern and response for the EASM and the WW are integrally stable on both short-term and long-term timescales. 展开更多
关键词 EastAsian summer monsoon westerly winds Last Glacial Maximum Ecological and hydrologic evolution history Qilian Mountains
下载PDF
UPPER OCEAN RESPONSE TO SURFACE MOMENTUM AND FRESHWATER FLUXES IN THE WESTERN PACIFIC WARM POOL 被引量:4
3
作者 Dake Chen 《热带海洋学报》 CAS CSCD 北大核心 2004年第6期1-15,共15页
A series of numerical experiments are carried out to study the tropical upper ocean response to combined momentum and buoyancy forcing, with emphasis on the three-dimensional thermohaline structure in the western Paci... A series of numerical experiments are carried out to study the tropical upper ocean response to combined momentum and buoyancy forcing, with emphasis on the three-dimensional thermohaline structure in the western Pacific warm pool. In response to climatological winds, heat fluxes and freshwater input, the model is able to simulate the salient dynamic and hydrographic features of the tropical Pacific Ocean and their seasonal variability. In response to idealized episodic westerly wind bursts and rainfall, the simulated upper ocean conditions compare favorably with available observations, thus enabling us to identify important physical processes involved. Local forcing, vertical mixing and meridional advection dominate the salt and heat budgets in the warm pool on short time scales, but it is necessary to include the saline water coming from the east with the South Equatorial Current to close the salt budget on seasonal and longer time scales. Strong westerly wind bursts generate a swift eastward equatorial jet and a pair of meridional circulation cells with convergence at the equator. This results in an equatorward advection of relatively fresh water from the north and a depression of the thermocline at the equator. Heavy rainfall reduces the surface mixed layer depth by creating a shallow halocline, thus trapping the momentum and heat inputs near the surface. The remote influences of the episodic momentum and buoyancy fluxes are very different. Westerly wind bursts can generate large downstream disturbances in both dynamic and thermal fields through the propagation of equatorial waves, while the effect of rainfall is mostly confined to the forcing area. 展开更多
关键词 FRESHWATER flux westerLY wind BURST western PACIFIC WARM POOL
下载PDF
Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer 被引量:3
4
作者 Xinyu LI Riyu LU Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期931-942,共12页
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan... This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity. 展开更多
关键词 western North Pacific subtropical high East Asian westerly jet CIRCULATION RAINFALL sea surface temperature
下载PDF
ANALYSIS OF THE CHARACTERISTICS OF EQUATORIAL WESTERLIES
5
作者 李若钝 邹娥梅 +3 位作者 刘丽惠 孙瑞本 施国强 苏新锁 《Journal of Tropical Meteorology》 SCIE 1995年第1期56-66,共11页
ANALYSISOFTHECHARACTERISTICSOFEQUATORIALWESTERLIES¥LiRuodunZouEmeiLiuLihuiSunRuiben(FirstInstituteofOceanogr... ANALYSISOFTHECHARACTERISTICSOFEQUATORIALWESTERLIES¥LiRuodunZouEmeiLiuLihuiSunRuiben(FirstInstituteofOceanography,SOA,Qingdao,... 展开更多
关键词 EQUATORIAL westerLIES TOGA-COARE EQUATORIAL westerLY BURST upper-and lowlevel westerLY jets
下载PDF
Response of western equatorial Pacificto a westerly wind burst
6
作者 Chai Fei and Xue Huijie (School of Marine Sciences , University of Maine, Orono, ME 04469 - 5741, USA) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1999年第4期505-514,共10页
Atmospheric jets-with shear-can induce a vertical oceanic circulation with upwelling and down -welling even over the open ocean in regions where the Coriolis parameter can be regarded as a constant. Winds with noshea... Atmospheric jets-with shear-can induce a vertical oceanic circulation with upwelling and down -welling even over the open ocean in regions where the Coriolis parameter can be regarded as a constant. Winds with nosheard that bloe parallel to the equator can also induce a vertical oceanic circulation with upwelling and downwellingwithin an equatorial radius of deformation. This study concerns the oceanic response to a westerly wind burst, in theform of an atmospheric jet, similar to those that occur over the western equatorial Pacific . It is shown that the shear ofthe wind, if it is within an equatorial radius of deformation, can alter the vertical circulation substantially, especially ifthere are westerly and easterly winds near the equator. A commentary on measurements amde during a westerly windburst over the western equatorial Pacific has been given. 展开更多
关键词 Atmospheric jets western equatorial Pacific a westerly wind burst
下载PDF
The Differences of Expressing Love between Western and Chinese Culture
7
作者 张立峰 《海外英语》 2012年第8X期208-210,共3页
Cultures are different between western countries and China,and people's ways of expressing their love are also different.Thes edifferences badly influence well communication between lovers and family members.By co... Cultures are different between western countries and China,and people's ways of expressing their love are also different.Thes edifferences badly influence well communication between lovers and family members.By comparing the different ways of expressing love between western people and Chinese,this paper tries to make readers deeply recognize and make use of the differences of expressing love. 展开更多
关键词 CULTURE DIFFERENCES EXPRESSING LOVE Chinese wester
下载PDF
An Overview of Dry-wet Climate Variability among Monsoon-Westerly Regions and the Monsoon Northernmost Marginal Active Zone in China 被引量:25
8
作者 钱维宏 丁婷 +2 位作者 胡豪然 林祥 秦爱民 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期630-641,共12页
Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that... Climate in China's Mainland can be divided into the monsoon region in the southeast and the westerly region in the northwest as well as the intercross zone, i.e., the monsoon northernmost marginal active zone that is oriented from Southwest China to the upper Yellow River, North China, and Northeast China. In the three regions, dry-wet climate changes are directly linked to the interaction of the southerly monsoon flow on the east side of the Tibetan Plateau and the westerly flow on the north side of the Plateau from the inter-annual to inter-decadal timescales. Some basic features of climate variability in the three regions for the last half century and the historical hundreds of years are reviewed in this paper. In the last half century, an increasing trend of summer precipitation associated with the enhancing westerly flow is found in the westerly region from Xinjiang to northern parts of North China and Northeast China. On the other hand, an increasing trend of summer precipitation along the Yangtze River and a decreasing trend of summer precipitation along the monsoon northernmost marginal active zone are associated with the weakening monsoon flow in East Asia. Historical documents are widely distributed in the monsoon region for hundreds of years and natural climate proxies are constructed in the non-monsoon region, while two types of climate proxies can be commonly found over the monsoon northernmost marginal active zone. In the monsoon region, dry-wet variation centers are altered among North China, the lower Yangtze River, and South China from one century to another. Dry or wet anomalies are firstly observed along the monsoon northernmost marginal active zone and shifted southward or southeastward to the Yangtze River valley and South China in about a 70-year timescale. Severe drought events are experienced along the monsoon northernmost marginal active zone during the last 5 centuries. Inter-decadal dry-wet variations are depicted by natural proxies for the last 4-5 centuries in several areas over the non-monsoon region. Some questions, such as the impact of global warming on dry-wet regime changes in China, complex interactions between the monsoon and westerly flows in Northeast China, and the integrated multi-proxy analysis throughout all of China, are proposed. 展开更多
关键词 dry-wet climate variability monsoon region westerly region monsoon active zone China
下载PDF
Anomalous Midsummer Rainfall in Yangtze River-Huaihe River Valleys and Its Association with the East Asia Westerly Jet 被引量:21
9
作者 宣守丽 张庆云 孙淑清 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期387-397,共11页
In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsumm... In this study, the interannual and interdecadal relationship between midsummer Yangtze River-Huaihe River valley (YHRV) rainfall and the position of the East Asia westerly jet (EAWJ) were investigated. The midsummer YHRV rainfall was found to significantly increase after the 1980s. Moreover, the location of the EAWJ was found abnormally south of the climatic mean during 1980–2008 (ID2) compared to 1951–1979 (ID1). During ID2, associated with the southward movement of the EAWJ, an anomalous upper-level conver-gence occurred over middle-high latitudes (35° –55° N) and divergence occurred over lower latitudes (~30°N) of East Asia. Correspondingly, anomalous descending and ascending motion was observed in middle-high and lower latitudes along 90°–130° E, respectively, favoring more precipitation over YHRV. On an interan-nual time scale, the EAWJ and YHRV rainfall exhibited similar relationships during the two periods. When the EAWJ was centered abnormally southward, rainfall over YHRV tended to increase. However, EAWJ-related circulations were significantly different during the two periods. During ID1, the circulation of the southward-moving EAWJ exhibited alternating positive–negative–positive distributions from low to middle– high latitudes along the East Asian coast; the most significant anomaly appeared west of the Okhotsk Sea. However, during ID2 the EAWJ was more closely correlated with the tropical and subtropical circulations. Significant differences between ID1 and ID2 were also recorded sea surface temperatures (SSTs). During ID1, the EAWJ was influenced by the extratropical SST over the northern Pacific; however, the EAWJ was more significantly affected by the SST of the tropical western Pacific during ID2. 展开更多
关键词 anomalous rainfall events Yangtze River-Huaihe River valleys East Asian westerly jet wave activity
下载PDF
Role of the Subtropical Westerly Jet Waveguide in a Southern China Heavy Rainstorm in December 2013 被引量:15
10
作者 LI Chun SUN Jilin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期601-612,共12页
An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall proce... An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet. 展开更多
关键词 subtropical westerly jet waveguide southern China rainstorm Rossby wave India–Burma trough North At-lantic Oscillation
下载PDF
Predictability of the Summer East Asian Upper-Tropospheric Westerly Jet in ENSEMBLES Multi-Model Forecasts 被引量:9
11
作者 LI Chaofan LIN Zhongda 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1669-1682,共14页
The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint,... The interannual variation of the East Asian upper-tropospheric westerly jet (EAJ) significantly affects East Asian climate in summer. Identifying its performance in model prediction may provide us another viewpoint, from the perspective of uppertropospheric circulation, to understand the predictability of summer climate anomalies in East Asia. This study presents a comprehensive assessment of year-to-year variability of the EAJ based on retrospective seasonal forecasts, initiated from 1 May, in the five state-of-the-art coupled models from ENSEMBLES during 1960-2005. It is found that the coupled models show certain capability in describing the interannual meridional displacement of the EAJ, which reflects the models' performance in the first leading empirical orthogonal function (EOF) mode. This capability is mainly shown over the region south of the EAJ axis. Additionally, the models generally capture well the main features of atmospheric circulation and SST anomalies related to the interannual meridional displacement of the EAJ. Further analysis suggests that the predicted warm SST anomalies in the concurrent summer over the tropical eastern Pacific and northern Indian Ocean are the two main sources of the potential prediction skill of the southward shift of the EAJ. In contrast, the models are powerless in describing the variation over the region north of the EAJ axis, associated with the meridional displacement, and interannual intensity change of the EAJ, the second leading EOF mode, meaning it still remains a challenge to better predict the EAJ and, subsequently, summer climate in East Asia, using current coupled models. 展开更多
关键词 East Asian westerly jet seasonal prediction coupled model meridional displacement
下载PDF
Effects of wind waves of the Pacific westerly on the eastern Pacific wave transport 被引量:7
12
作者 DENG Zeng' an WU Kejian +1 位作者 ZHAO Dongliang YU Ting 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第1期83-88,共6页
There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF rean... There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data.By comparing the 2000 monthly-mean WT and monthly-mean wind field from QUICKSCAT,large differences are found between the wave transport direction and the wind direction over the Eastern Pacific.This may serve as an evidence for the existence of the SP in this region.The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific(TEP) are in the westerly regions of the Southern and Northern Pacific. 展开更多
关键词 swell pool wave transport Eastern Pacific westerLY
下载PDF
Distribution of isotopes and chemicals in precipitation in Shule River Basin,northwestern China:an implication for water cycle and groundwater recharge 被引量:7
13
作者 ZHAO Wei MA Jinzhu +3 位作者 GU Chunjie QI Shi ZHU Gaofeng HE Jiahua 《Journal of Arid Land》 SCIE CSCD 2016年第6期973-985,共13页
The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The... The distribution of stable isotopes and ions in precipitation in the Shule River Basin, northwestern China, were investigated to understand the regional water cycle and precipitation input to groundwater recharge. The study found that the mean annual concentrations of Ca2+, Na+, SO42-, CI-, Mg2+, NO3-, and K+ in the basin were lower than those in other arid areas of northwestern China. The average concentrations of ions in the lower reaches of the Shule River were higher than those in the upper reaches. The results showed that the main ionic concentrations decreased with the increase of precipitation amount, indicating that heavy precipitation cannot only wash crustal aerosols out of the atmosphere, but also create a dilution effect. CI- and Na+ in precipitation had a strong and positive correlation, suggesting a common origin for the two ions. However, the excess of Na+, combined with non-marine SO42- and NO3-, indicated that some ions were contributed by terrestrial origins. In the extremely arid regions of northwestern China, the evaporation process obviously changes the original relationship between δ2H and δ18O in precipitation, and leads to dexcess values 〈8‰. δ18O and temperature were significantly correlated, suggested that temperature strongly affected the characteristics of isotopes in the study area. The δ18O value indicates a dominant effect of westerly air masses and southwest monsoon in warm months, and the integrated influence of westerly and Siberian-Mongolian polar air masses in cold months. The d-excess values were generally lower in warm months than those in cold months, indicating that post-condensation processes played a significant role in the water cycle. The results provide reliable precipitation input information that can be used in future groundwater recharge calculations in the study area. 展开更多
关键词 PRECIPITATION stable isotopes ions westerly air masses Shule River Basin
下载PDF
Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia 被引量:17
14
作者 况雪源 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期831-840,共10页
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist i... The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration. 展开更多
关键词 East Asian subtropical westerly jet seasonal variation meridional difference of temperature heating fields over East Asia
下载PDF
Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern 被引量:7
15
作者 Xiaowei HONG Riyu LU Shuanglin LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期389-396,共8页
In previous work, a significant relationship was identified between the meridional displacement of the Asian westerly jet (JMD) and the Silk Road Pattern (SRP) in summer. The present study reveals that this relati... In previous work, a significant relationship was identified between the meridional displacement of the Asian westerly jet (JMD) and the Silk Road Pattern (SRP) in summer. The present study reveals that this relationship is robust in northward JMD years but absent in southward JMD years. In other words, the amplitude of the SRP increases with northward displacement of the jet but shows little change with southward displacement. Further analysis indicates that, in northward JMD years, the Rossby wave source (RWS) anomalies, which are primarily contributed by the planetary vortex stretching, are significantly stronger around the entrance of the Asian jet, i.e., the Mediterranean Sea-Caspian Sea area, with the spatial distribution being consistent with that related to the SRP. By contrast, in southward JMD years, the RWS anomalies are much weaker. Therefore, this study suggests that the RWS plays a crucial role in inducing the asymmetry of the JMD-SRP relationship. The results imply that climate anomalies may be stronger in strongly northward-displaced JMD years due to the concurrence of the JMD and SRP, and thus more attention should be paid to these years. 展开更多
关键词 Asian westerly jet meridional displacement Silk Road Pattern asymmetric relation Rossby wave source
下载PDF
Has the East Asian Westerly Jet Experienced a Poleward Displacement in Recent Decades? 被引量:7
16
作者 张耀存 黄丹青 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第6期1259-1265,共7页
Previous studies have suggested a poleward shift of the zonally averaged jet stream due to rapid warming over continents.However,the regional characteristics of the change in the jet stream are not yet understood.Here... Previous studies have suggested a poleward shift of the zonally averaged jet stream due to rapid warming over continents.However,the regional characteristics of the change in the jet stream are not yet understood.Here,we present evidence suggesting that the East Asian westerly jet did not shift poleward in past decades(1980-2004 relative to 1958-1979),both in winter and summer.Rather,the jet axis has moved southward in summer,but its meridional position is steady in winter.The main change of the jet stream in winter is the enhancement of its intensity.These changes in both summer and winter are consistent with the corresponding changes in the large meridional tropospheric temperature-gradient zone.Based on these results,we suggest that the changes of the jet stream over East Asia are unique and are different from the zonal mean jet stream over the Northern Hemisphere and over the North Atlantic region. 展开更多
关键词 East Asian westerly jet meridional displacement decadal changes
下载PDF
The Westerly Anomalies over the Tropical Pacific and Their Dynamical Effect on the ENSO Cycles during 1980~1994 被引量:4
17
作者 黄荣辉 臧晓云 +1 位作者 张人禾 陈际龙 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第2期2-14,17-18,共15页
In this paper, the zonal wind anomalies in the lower troposphere over the tropical Pacific during 1980-1994 are analyzed by using the observed data. The results show that during the formation of the 1982/83, 1986/87 a... In this paper, the zonal wind anomalies in the lower troposphere over the tropical Pacific during 1980-1994 are analyzed by using the observed data. The results show that during the formation of the 1982/83, 1986/87 and 1991/92 ENSO events, there were the larger westerly anomalies in the lower troposphere over the equatorial Pacific. Moreover, it is explained by using the correlation analyses that the westerly anomalies over the equatorial Pacific could cause the warm episodes of the equatorial central and eastern Pacific. A simple air-sea coupled model is used to discuss theoretically the dynamical effect of the observed westerly anomalies of wind stress near the sea surface of the equatorial Pacific on the ENSO cycle occurred in the period of 1981-1983. It is shown by using the theoretical calculations of the equatorial oceanic Kelvin wave and Rossby waves responding to the forcing of the observed anomalies of zonal wind stress near the sea surface of the equatorial Pacific that the westerly anomalies of wind stress near the sea surface of the equatorial Pacific make significant dynamical effect on the ENSO cycles occurred in the period of 1982-1983. 展开更多
关键词 westerly anomalies ENSO cycle Kelvin wave Rossby wave
下载PDF
Simulations of the East Asian Subtropical Westerly Jet by LASG/IAP AGCMs 被引量:4
18
作者 郭兰丽 张耀存 +3 位作者 王斌 李立娟 周天军 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期447-457,共11页
Performances of two LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Atmospheric General Circulation Models (AGCMs), na... Performances of two LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Atmospheric General Circulation Models (AGCMs), namely GAMIL and SAMIL, in simulating the major characteristics of the East Asian subtropical westerly jet (EASWJ) in the upper troposphere are examined in this paper. The mean vertical and horizontal structures and the correspondence of the EASWJ location to the meridional temperature gradient in the upper troposphere are well simulated by two models. However, both models underestimate the EASWJ intensity in winter and summer, and are unable to simulate the bimodal distribution of the major EASWJ centers in mid-summer, relative to the observation, especially for the SAMIL model. The biases in the simulated EASWJ intensity are found to be associated with the biases of the meridional temperature gradients in the troposphere, and furthermore with the surface sensible heat flux and condensation latent heating. The models capture the major characteristics of the seasonal evolution of the diabatic heating rate averaged between 30°-45°N, and its association with the westerly jet. However, the simulated maximum diabatic heating rate in summer is located westward in comparison with the observed position, with a relatively strong diabatic heating intensity, especially in GAMIL. The biases in simulating the diabatic heating fields lead to the biases in simulating the temperature distribution in the upper troposphere, which may further affect the EASWJ simulations. Therefore, it is necessary to improve the simulation of the meridional temperature gradient as well as the diabatic heating field in the troposphere for the improvement of the EASWJ simulation by GAMIL and SAMIL models. 展开更多
关键词 East Asian subtropical westerly jet GAMIL SAMIL Diabatic heating
下载PDF
Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models 被引量:3
19
作者 Zhongda LIN Yuanhai FU Riyu LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第6期614-622,共9页
The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupl... The East Asian westerly jet(EAJ), an important midlatitude circulation of the East Asian summer monsoon system,plays a crucial role in affecting summer rainfall over East Asia. The multimodel ensemble of current coupled models can generally capture the intensity and location of the climatological summer EAJ. However, individual models still exhibit large discrepancies. This study investigates the intermodel diversity in the longitudinal location of the simulated summer EAJ climatology in the present-day climate and its implications for rainfall over East Asia based on 20 CMIP5 models. The results show that the zonal location of the simulated EAJ core is located over either the midlatitude Asian continent or the western North Pacific(WNP) in different models. The zonal shift of the EAJ core depicts a major intermodel diversity of the simulated EAJ climatology. The westward retreat of the EAJ core is related to a warmer mid–upper tropospheric temperature in the midlatitudes, with a southwest–northeast tilt extending from Southwest Asia to Northeast Asia and the northern North Pacific, induced partially by the simulated stronger rainfall climatology over South Asia. The zonal shift of the EAJ core has some implications for the summer rainfall climatology, with stronger rainfall over the East Asian continent and weaker rainfall over the subtropical WNP in relation to the westward-located EAJ core. 展开更多
关键词 ZONAL LOCATION East Asian westerLY jet SUMMER RAINFALL intermodel DIVERSITY CMIP5
下载PDF
Meridional Displacement of the East Asian Upper-tropospheric Westerly Jet and Its Relationship with the East Asian Summer Rainfall in CMIP5 Simulations 被引量:3
20
作者 Yuhan YAN Chaofan LI Riyu LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1203-1216,共14页
As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the i... As the first leading mode of upper-tropospheric circulation in observations, the meridional displacement of the East Asian westerly jet (EAJ) varies closely with the East Asian rainfall in summer. In this study, the interannual variation of the EAJ meridional displacement and its relationship with the East Asian summer rainfall are evaluated, using the historical simulations of CMIP5 (phase 5 of the Coupled Model Intercomparison Project). The models can generally reproduce the meridional displacement of the EAJ, which is mainly manifested as the first principal mode in most of the simulations. For the relationship between the meridional displacement of the EAJ and East Asian rainfall, almost all the models depict a weaker correlation than observations and exhibit considerably large spread across the models. It is found that the discrepancy in the interannual relationship is closely related to the simulation of the climate mean state, including the climatological location of the westerly jet in Eurasia and rainfall bias in South Asia and the western North Pacific. In addition, a close relationship between the simulation discrepancy and intensity of EAJ variability is also found: the models with a stronger intensity of the EAJ meridional displacement tend to reproduce a closer interannual relationship, and vice versa. 展开更多
关键词 EAST ASIAN westerLY jet MERIDIONAL TELECONNECTION EAST ASIAN rainband model simulation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部