The formation of many hydrothermal gold deposits is closely related to iron-rich rocks. The host rocks of the Madiyi Formation of the Mid-to Late Neoproterozoic Banxi Group for the Woxi Au(-Sb-W) deposit, which is loc...The formation of many hydrothermal gold deposits is closely related to iron-rich rocks. The host rocks of the Madiyi Formation of the Mid-to Late Neoproterozoic Banxi Group for the Woxi Au(-Sb-W) deposit, which is located in western Hunan Province of the western Jiangnan Orogen, South China, is rich in hematite, which provides a good example for studying the relationship between the formation of gold deposit and iron-rich rocks. Field investigation and petrographic observation on the unaltered, weakly altered and strongly altered rocks demonstrate that the bleaching is caused by a combination of carbonatization, sulfidation and sericitization. Mass balance calculation suggests that, during decolourization there is no change in TFe_(2)O_(3), while FeO is gained and Fe_(2)O_(3)is lost. Geochemical modeling found that Au was mainly present as AuHS(aq) and Au(HS)-2, and that the water-rock interactions decreased the sulfur fugacity which destroyed the stability of such aqueous complexes. Combined with the locally occurred native gold in quartz veins, it is concluded that the major gold precipitation mechanisms are sulfidation and fluid boiling. Based on previous geochronological and geochemical research further gold mineralization is proposed to be generated by deep sourced magmatic or metamorphic fluid migrated upward along the Woxi fault, and the iron-rich Madiyi Formation is the idea chemical trap for gold deposition. The decrease of sulfur contents caused by fluid-rock interactions and fluid boiling are the major mechanisms for gold mineralization.展开更多
基金supported by the National Natural Science Foundation of China (No.41930428)the scientific research start-up fund for doctors of East China University of Technology (No.DHBK2019066)the science and technology research project of Jiangxi Education Department (No.GJJ2200754)。
文摘The formation of many hydrothermal gold deposits is closely related to iron-rich rocks. The host rocks of the Madiyi Formation of the Mid-to Late Neoproterozoic Banxi Group for the Woxi Au(-Sb-W) deposit, which is located in western Hunan Province of the western Jiangnan Orogen, South China, is rich in hematite, which provides a good example for studying the relationship between the formation of gold deposit and iron-rich rocks. Field investigation and petrographic observation on the unaltered, weakly altered and strongly altered rocks demonstrate that the bleaching is caused by a combination of carbonatization, sulfidation and sericitization. Mass balance calculation suggests that, during decolourization there is no change in TFe_(2)O_(3), while FeO is gained and Fe_(2)O_(3)is lost. Geochemical modeling found that Au was mainly present as AuHS(aq) and Au(HS)-2, and that the water-rock interactions decreased the sulfur fugacity which destroyed the stability of such aqueous complexes. Combined with the locally occurred native gold in quartz veins, it is concluded that the major gold precipitation mechanisms are sulfidation and fluid boiling. Based on previous geochronological and geochemical research further gold mineralization is proposed to be generated by deep sourced magmatic or metamorphic fluid migrated upward along the Woxi fault, and the iron-rich Madiyi Formation is the idea chemical trap for gold deposition. The decrease of sulfur contents caused by fluid-rock interactions and fluid boiling are the major mechanisms for gold mineralization.