An incomplete caudal vertebral series (IVPP V11309) from the Yixian Formation of late Mesozoic, Jianshangou area of Beipiao, western Liaoning Province, may represent a new bird. The tail is composed of at least 12 fre...An incomplete caudal vertebral series (IVPP V11309) from the Yixian Formation of late Mesozoic, Jianshangou area of Beipiao, western Liaoning Province, may represent a new bird. The tail is composed of at least 12 free caudal vertebrae and the most distal 5 caudal vertebrae co-ossified into a pygostyle. The pygostyle is plate-like and slightly curved dorsally. The anterior free caudals are amphiplatyan. The anterior caudal surfaces of the last three free caudals are concave, but their posterior articular surfaces are convex. The pygostyle is regarded as the first appeared flight apparatus during the evolutionary process from Archaeopteryx to neornithes. The pygostyle appeared in most early fossil birds and almost all the modern birds. Although their morphologies are different, they are basically formed by at least four last caudal vertebrae. The specimen V11309 is regarded as a bird rather than a non-avian theropod dinosaur based on the following characters: short caudal vertebrae, numerous pits present on the surfaces of the centra and, a foramen present between the basal part of the fused neural spines, which is similar to that of Struthio camelus. The discoveries of pygostyles from the therizinosauroids and oviraptorosaurs may provide strong evidence for supporting the origin of birds from small theropod dinosaurs. The structure of the pygostyle in specimen V11309 is different from those of Beipiaosaurus (Therizinosauroid) and Nomingia (oviraptorosaur). The most parsimonious interpretation is that these pygostyle-like structures are independently acquired by Beipiaosaurus and Nomingia during their evolutionary process.展开更多
The geological corridor of Western Liaoning province is an area of length 100 km and width 20 km and located in the eastern segment of northern margin of North China Craton(NCC),with the wide distribution of Mesozoi...The geological corridor of Western Liaoning province is an area of length 100 km and width 20 km and located in the eastern segment of northern margin of North China Craton(NCC),with the wide distribution of Mesozoic granitic magmatism.It is the ideal area to study the granitic petrogenesis,the nature of magma source and the tectonic attribute.In this paper,we do the systematic researchesaboutthepetrology,geochronology,geochemistry and Zircon Hf isotopic of granitic rocks.Based on the mentioned above,we have built the geochronological framework and have discussed the petrogenesis,the nature of magma source and the tectonic setting of granitic rocks.And according to the information about the crust-mantle interaction recorded in granitic rocks and the regional data,we also discuss the relationship between Mesozoic granitic magma activities and lithosphere thinning,destruction of Craton mechanism in the eastern segment of northern margin of NCC.The Mesozoic granitic magma activities in The geological corridor of Western Liaoning province are divided into four stages(Fig.1):Late Triassic(230 Ma;28 Ma),early-middle Jurassic(194 Ma;69 Ma),Late Jurassic(161 Ma;55 Ma)and Early Cretaceous(139Ma;21 Ma).The late Triassic granitic rocks are composed of adamellite,monzogranite and diorite.The samples have high Sr,Cr,Ni content and low Yb,Y content,and the sample have high Mg#and high ratio of Sr/Y and La/Yb.The characteristics of inhomogenous negative value ofεHf(t)(-6.40;0.19)in magmatic zircons and ancient crustal TDM2 values of 1.25 Ga;.67 Ga(Fig.2),indicate that the Triassic granitic rocks were formed in a post-collisional extensional tectonic setting aftersubduction of Paleo-Asian Ocean and the subduction of Yangtze Craton,and they are the product of partial melting of ancient lower crust under the condition of the mantle-derived magma underplating,and geochemical features of the high Sr and low Y are inherited from the source of magma which is also enriched in Sr and depleted in Y.The geochemical features and assemblages of rocks formed during Jurassic-early Cretaceous are similar.The early-middle Jurassic granitic rocks are composed of syenogranite,monzogranite,quartz monzonite,granitic porphyry,granodiorite and quartz diorite.The late Jurassic granitic rocks are composed of monzogranite,granitic porphyry,and quartz diorite.The early Cretaceous granitic rocks are composed of monzogranite,quartz syenite,granitic porphyry,and quartz monzodiorite.The samples are characterized by the high SiO;content and total alkalis and are belonged to the high-K calc-alkaline series.And the characteristics of quasi-aluminous to weakly peraluminous(A/CNK<1.1,A/NK>1.0)and the negative relationship between P;O;and SiO;are similar to the characteristics of I-type granite.The samples are enriched in LREE contents and K,Pb and depleted in Nb,Ta,Ti and P.The characteristics of assemblage and geochemical features indicate the Jurassic-Cretaceous granitic rocks formed in the setting of active continental margin related to the subduction.The magmatic zircons of early-middle Jurassic granitic rocks have negativeεHf(t)(-16.60;4.15)and ancient crustal TDM2 values of 1.49 Ga;.28 Ga which indicates the primary magma is from the partial melting of ancient middle-lower crust(Fig.2).These rocks formed in the setting of active continental margin of subduction of Paleo-Pacific plate.The magma source of granitic rocks is from partial melting of the ancient lower-middle curst caused by the underplating of mantle magma,which formed in the condition of fluid derived from the dehydration of subducted slab affected on the lithosphere mantle.The magmatic zircons of late Jurassic granitic rocks have negativeεHf(t)(-26.24;18.56)and ancient crustal TDM2 values of(2.39 Ga;.87 Ga)which indicates the primary magma is from the partial melting of ancient upper-middle crust(Fig.2).And these rocks may be formed in the setting of active continental margin of intense subduction of Paleo-Pacific plate.In the intense subduction,the mantle magma is formed in the interaction of fluid derived from the dehydration of subducted slab with the lithosphere mantle,then further underplated the ancient middle-upper crust and make the ancient middle-upper curst partial melting.In this setting,the late Jurassic rocks are distributed widely in eastern North China.The samples in early Cretaceous have a wide range of values of Hf isotope:-24.92;20.88(139 Ma),-4.72;6.22(130 Ma),-17.30;11.56(125 Ma;21 Ma),and the characteristics of Hf isotope indicate the source of earlyCretaceousmagma(middle-uppercrust,middle-lower crust or juvenile crust)is very complicated(Fig.2).The early Cretaceous granitic rocks were formed in the lithosphere extensional environment when the Paleo-Pacific plate subducted/roll-backed quickly in the direction of NNW with high angle.The regional extension made the asthenosphere upwell and be unstable,and the magma of mantle was formed.Then wide mantle-crust interactions make the crust partial melt,as a result,the source of early Cretaceous igneous rocks which are distributed widely in eastern North China Craton.The participation of depleted mantle components in the process of Late Triassic rock formation in western Liaoning area indicate the time of the lithosphere thinning in the eastern segment of northern margin of NCC begin from the late Triassic(;30 Ma).The double subduction of Paleo-Asian Ocean and Yangtze Craton in the early period is the reason of the lithosphere thinning.After the double subduction,the mantle-derived magma upwell and underplate the lithosphere mantle and lower crust in a post-collisional extensional tectonic setting.As a result,the lithosphere began to thin but the Craton destruction was not obviously in this period.The participation of depleted mantle components makes the continental crust slightly reforms and grows.The eastern segment of northern margin of NCC was in the setting of active continental margin in Jurassic,and the continuing dehydration and metasomatism of subduction slab changed the physical and chemical properties of the lithosphere mantle.The initial weak subduction in early-middle Jurassic makes the lithosphere become thin but no obvious destruction of Craton.And in this period,the continental crust reformed and grew slightly.As the subduction became stronger during late Jurassic,the thickness of lithosphere in eastern segment of northern margin of NCC become thinner and the destruction of Craton occurred locally and the continental crust reformed and grew to some extent.In early Cretaceous,the change of direction and angle of subduction of Paleo-Pacific led to the regional extension,which is the reason for massive mantle material upwelling and intense crust-mantle interaction.And the lithosphere thinning and destruction of Craton reached the peak.As a result,the effects of reconstruction and hyperplasia of continental crust are obviously.In our opinions,the underplating mechanism of mantle-derived magma occurred mainly in the initial stage(early Mesozoic)oflithosphere thinning,and the delamination of lithosphere mantle or lower crust coexisted while erosion action of mantle material occurred in the stage(late Mesozoic)of strong lithosphere thinning and destruction of Craton.展开更多
The Jianchang Basin is one of the main localities of the precious fossils of Jehol Biota in western Liaoning.The fossil-bearing horizons are mainly in the Yixian-and Jiufotang formations.In the Weijialing--Yaolugou of...The Jianchang Basin is one of the main localities of the precious fossils of Jehol Biota in western Liaoning.The fossil-bearing horizons are mainly in the Yixian-and Jiufotang formations.In the Weijialing--Yaolugou of southwest Jianchang Basin,many precious fossils have been found at Luojiagou Bed of the 2nd Member of the Yixian Formation and at Xidian Bed of the 1st member of the Jiufotang Formation.The geologic setting,sedimentary environment and paleogeography of the precious fossil-bearing beds were also studied.展开更多
The distinctive topography in western Shandong province consists of several NW-WNW-trending mountain ranges and intervening basins. Basins, in which late-stage sediments to the south have progressively overlapped the ...The distinctive topography in western Shandong province consists of several NW-WNW-trending mountain ranges and intervening basins. Basins, in which late-stage sediments to the south have progressively overlapped the earlier sediments and "basement" rocks of the hanging-wall block, are bounded by S-SW-dipping normal faults to the north. Basin analysis reveals the Jurassic-Cretaceous sedimentary rocks accumulated both within the area of crustal extension and during extensional deformation; they contain a record of a sequence of tectonic events during stretching and can be divided into four tectonic-sequence episodes. These basins were initially developed as early as ca. 200 Ma in the northern part of the study area, extending dominantly N-S from the Early Jurassic until the Late Cretaceous. Although with a brief hiatus due to changes in stress field, to keep uniform N-S extensional polarity in such a long time as 130 Ma requires a relatively stable tectonic controlling factor responsible for the NW- and E-W-extensional basins. The formation of the extensional basins is partly concurrent with regional magmatism, but preceded magmatism by 40 Ma. This precludes a genetic link between local magmatism and extension during the Mesozoic. Based on integrated studies of basins and deformation, we consider that the gravitational collapse of the early overthickened continental crust may be the main tectonic driver for the Mesozoic extensional basins. From the Early Jurassic, dramatic reduction in north-south horizontal compressive stress made the western Shandong deformation belt switch from a state of failure under shortening to one dominated by extension and the belt gravitationally collapsed and horizontally spread to the south until equilibrium was established; synchronously, the normal faults and basins were developed based on the model of simple-shear extensional deformation. This may be relative to the gravitational collapse of the Mesozoic plateau in eastern China.展开更多
文摘An incomplete caudal vertebral series (IVPP V11309) from the Yixian Formation of late Mesozoic, Jianshangou area of Beipiao, western Liaoning Province, may represent a new bird. The tail is composed of at least 12 free caudal vertebrae and the most distal 5 caudal vertebrae co-ossified into a pygostyle. The pygostyle is plate-like and slightly curved dorsally. The anterior free caudals are amphiplatyan. The anterior caudal surfaces of the last three free caudals are concave, but their posterior articular surfaces are convex. The pygostyle is regarded as the first appeared flight apparatus during the evolutionary process from Archaeopteryx to neornithes. The pygostyle appeared in most early fossil birds and almost all the modern birds. Although their morphologies are different, they are basically formed by at least four last caudal vertebrae. The specimen V11309 is regarded as a bird rather than a non-avian theropod dinosaur based on the following characters: short caudal vertebrae, numerous pits present on the surfaces of the centra and, a foramen present between the basal part of the fused neural spines, which is similar to that of Struthio camelus. The discoveries of pygostyles from the therizinosauroids and oviraptorosaurs may provide strong evidence for supporting the origin of birds from small theropod dinosaurs. The structure of the pygostyle in specimen V11309 is different from those of Beipiaosaurus (Therizinosauroid) and Nomingia (oviraptorosaur). The most parsimonious interpretation is that these pygostyle-like structures are independently acquired by Beipiaosaurus and Nomingia during their evolutionary process.
文摘The geological corridor of Western Liaoning province is an area of length 100 km and width 20 km and located in the eastern segment of northern margin of North China Craton(NCC),with the wide distribution of Mesozoic granitic magmatism.It is the ideal area to study the granitic petrogenesis,the nature of magma source and the tectonic attribute.In this paper,we do the systematic researchesaboutthepetrology,geochronology,geochemistry and Zircon Hf isotopic of granitic rocks.Based on the mentioned above,we have built the geochronological framework and have discussed the petrogenesis,the nature of magma source and the tectonic setting of granitic rocks.And according to the information about the crust-mantle interaction recorded in granitic rocks and the regional data,we also discuss the relationship between Mesozoic granitic magma activities and lithosphere thinning,destruction of Craton mechanism in the eastern segment of northern margin of NCC.The Mesozoic granitic magma activities in The geological corridor of Western Liaoning province are divided into four stages(Fig.1):Late Triassic(230 Ma;28 Ma),early-middle Jurassic(194 Ma;69 Ma),Late Jurassic(161 Ma;55 Ma)and Early Cretaceous(139Ma;21 Ma).The late Triassic granitic rocks are composed of adamellite,monzogranite and diorite.The samples have high Sr,Cr,Ni content and low Yb,Y content,and the sample have high Mg#and high ratio of Sr/Y and La/Yb.The characteristics of inhomogenous negative value ofεHf(t)(-6.40;0.19)in magmatic zircons and ancient crustal TDM2 values of 1.25 Ga;.67 Ga(Fig.2),indicate that the Triassic granitic rocks were formed in a post-collisional extensional tectonic setting aftersubduction of Paleo-Asian Ocean and the subduction of Yangtze Craton,and they are the product of partial melting of ancient lower crust under the condition of the mantle-derived magma underplating,and geochemical features of the high Sr and low Y are inherited from the source of magma which is also enriched in Sr and depleted in Y.The geochemical features and assemblages of rocks formed during Jurassic-early Cretaceous are similar.The early-middle Jurassic granitic rocks are composed of syenogranite,monzogranite,quartz monzonite,granitic porphyry,granodiorite and quartz diorite.The late Jurassic granitic rocks are composed of monzogranite,granitic porphyry,and quartz diorite.The early Cretaceous granitic rocks are composed of monzogranite,quartz syenite,granitic porphyry,and quartz monzodiorite.The samples are characterized by the high SiO;content and total alkalis and are belonged to the high-K calc-alkaline series.And the characteristics of quasi-aluminous to weakly peraluminous(A/CNK<1.1,A/NK>1.0)and the negative relationship between P;O;and SiO;are similar to the characteristics of I-type granite.The samples are enriched in LREE contents and K,Pb and depleted in Nb,Ta,Ti and P.The characteristics of assemblage and geochemical features indicate the Jurassic-Cretaceous granitic rocks formed in the setting of active continental margin related to the subduction.The magmatic zircons of early-middle Jurassic granitic rocks have negativeεHf(t)(-16.60;4.15)and ancient crustal TDM2 values of 1.49 Ga;.28 Ga which indicates the primary magma is from the partial melting of ancient middle-lower crust(Fig.2).These rocks formed in the setting of active continental margin of subduction of Paleo-Pacific plate.The magma source of granitic rocks is from partial melting of the ancient lower-middle curst caused by the underplating of mantle magma,which formed in the condition of fluid derived from the dehydration of subducted slab affected on the lithosphere mantle.The magmatic zircons of late Jurassic granitic rocks have negativeεHf(t)(-26.24;18.56)and ancient crustal TDM2 values of(2.39 Ga;.87 Ga)which indicates the primary magma is from the partial melting of ancient upper-middle crust(Fig.2).And these rocks may be formed in the setting of active continental margin of intense subduction of Paleo-Pacific plate.In the intense subduction,the mantle magma is formed in the interaction of fluid derived from the dehydration of subducted slab with the lithosphere mantle,then further underplated the ancient middle-upper crust and make the ancient middle-upper curst partial melting.In this setting,the late Jurassic rocks are distributed widely in eastern North China.The samples in early Cretaceous have a wide range of values of Hf isotope:-24.92;20.88(139 Ma),-4.72;6.22(130 Ma),-17.30;11.56(125 Ma;21 Ma),and the characteristics of Hf isotope indicate the source of earlyCretaceousmagma(middle-uppercrust,middle-lower crust or juvenile crust)is very complicated(Fig.2).The early Cretaceous granitic rocks were formed in the lithosphere extensional environment when the Paleo-Pacific plate subducted/roll-backed quickly in the direction of NNW with high angle.The regional extension made the asthenosphere upwell and be unstable,and the magma of mantle was formed.Then wide mantle-crust interactions make the crust partial melt,as a result,the source of early Cretaceous igneous rocks which are distributed widely in eastern North China Craton.The participation of depleted mantle components in the process of Late Triassic rock formation in western Liaoning area indicate the time of the lithosphere thinning in the eastern segment of northern margin of NCC begin from the late Triassic(;30 Ma).The double subduction of Paleo-Asian Ocean and Yangtze Craton in the early period is the reason of the lithosphere thinning.After the double subduction,the mantle-derived magma upwell and underplate the lithosphere mantle and lower crust in a post-collisional extensional tectonic setting.As a result,the lithosphere began to thin but the Craton destruction was not obviously in this period.The participation of depleted mantle components makes the continental crust slightly reforms and grows.The eastern segment of northern margin of NCC was in the setting of active continental margin in Jurassic,and the continuing dehydration and metasomatism of subduction slab changed the physical and chemical properties of the lithosphere mantle.The initial weak subduction in early-middle Jurassic makes the lithosphere become thin but no obvious destruction of Craton.And in this period,the continental crust reformed and grew slightly.As the subduction became stronger during late Jurassic,the thickness of lithosphere in eastern segment of northern margin of NCC become thinner and the destruction of Craton occurred locally and the continental crust reformed and grew to some extent.In early Cretaceous,the change of direction and angle of subduction of Paleo-Pacific led to the regional extension,which is the reason for massive mantle material upwelling and intense crust-mantle interaction.And the lithosphere thinning and destruction of Craton reached the peak.As a result,the effects of reconstruction and hyperplasia of continental crust are obviously.In our opinions,the underplating mechanism of mantle-derived magma occurred mainly in the initial stage(early Mesozoic)oflithosphere thinning,and the delamination of lithosphere mantle or lower crust coexisted while erosion action of mantle material occurred in the stage(late Mesozoic)of strong lithosphere thinning and destruction of Craton.
基金Supported by Projects of the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.GPMR200603)Project of Education Bureau of Liaoning Province(No.20060805)
文摘The Jianchang Basin is one of the main localities of the precious fossils of Jehol Biota in western Liaoning.The fossil-bearing horizons are mainly in the Yixian-and Jiufotang formations.In the Weijialing--Yaolugou of southwest Jianchang Basin,many precious fossils have been found at Luojiagou Bed of the 2nd Member of the Yixian Formation and at Xidian Bed of the 1st member of the Jiufotang Formation.The geologic setting,sedimentary environment and paleogeography of the precious fossil-bearing beds were also studied.
基金This work is the outgrowth of the regional geological study in western Shandong supported by the 973 Project of China(G 1999075502)the National Natural Science Foundation of China(grant 40372050).
文摘The distinctive topography in western Shandong province consists of several NW-WNW-trending mountain ranges and intervening basins. Basins, in which late-stage sediments to the south have progressively overlapped the earlier sediments and "basement" rocks of the hanging-wall block, are bounded by S-SW-dipping normal faults to the north. Basin analysis reveals the Jurassic-Cretaceous sedimentary rocks accumulated both within the area of crustal extension and during extensional deformation; they contain a record of a sequence of tectonic events during stretching and can be divided into four tectonic-sequence episodes. These basins were initially developed as early as ca. 200 Ma in the northern part of the study area, extending dominantly N-S from the Early Jurassic until the Late Cretaceous. Although with a brief hiatus due to changes in stress field, to keep uniform N-S extensional polarity in such a long time as 130 Ma requires a relatively stable tectonic controlling factor responsible for the NW- and E-W-extensional basins. The formation of the extensional basins is partly concurrent with regional magmatism, but preceded magmatism by 40 Ma. This precludes a genetic link between local magmatism and extension during the Mesozoic. Based on integrated studies of basins and deformation, we consider that the gravitational collapse of the early overthickened continental crust may be the main tectonic driver for the Mesozoic extensional basins. From the Early Jurassic, dramatic reduction in north-south horizontal compressive stress made the western Shandong deformation belt switch from a state of failure under shortening to one dominated by extension and the belt gravitationally collapsed and horizontally spread to the south until equilibrium was established; synchronously, the normal faults and basins were developed based on the model of simple-shear extensional deformation. This may be relative to the gravitational collapse of the Mesozoic plateau in eastern China.