During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and t...During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and there are altogether five cycles.It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics.As for the tropics,the biweekly meridional march and retreat of the western Pacific subtropical high(WPSH)is particularly evident.As for the extratropics,geopotential height anomalies near Lake Baikal are active.The former is attributed to the intensified biweekly activity of the southwest-northeast oriented EastAsian Pacific wave train(EAP)originating from the tropical western Pacific,while the latter is associated with the biweekly activities of the eastward propagating Eurasia mid-high latitudinal wave train and the westward propagating North Pacific wave train.Why the biweekly activities of these wave trains intensified is further diagnosed from the perspective of thermodynamical forcing and also from the modulation of interannual background on intraseasonal variability.It is found that the strongest recorded convection anchoring over the tropical western Indian Ocean(IO)triggers anomalous descent over the tropical western Pacific,which modulates the biweekly activity of the EAP.Meanwhile,the anomalous diabatic heating over the IO causes changes of the meridional thermodynamic contrast across the IO to the high latitudes,which modulates the extratropical wave trains.A further diagnosis of barotropic kinetic energy conversion suggests that the active occurrence of two extratropical biweekly wave trains is attributed to the increased efficiency of energy conversion from basic flow.The westward propagation of the extratropical North Pacific wave train is attributed to the weakened and northshifted upper-level westerly,which is caused by the SST warmth near the Kuroshio extension.展开更多
By using the upper-wind data from July 1980 to June 1983,the variations of the low-frequency oscillation (LFO)in the atmosphere before and during 1982 El Nino have been investigated.Before the El Nino,the LFO propagat...By using the upper-wind data from July 1980 to June 1983,the variations of the low-frequency oscillation (LFO)in the atmosphere before and during 1982 El Nino have been investigated.Before the El Nino,the LFO propagates from west to east over the equator of the Eastern Hemisphere and from east to west over 20°N. The eastward propagating LFO over the equator consists of zonal wavenumber 1 propagating eastward and zonal wavenumber 2 with a character of stationary wave.The oscillation of zonal wavenumber 2 can modulate the oscillation strength.After the onset of the El Nino,the propagating directions of the LFO over the equator and 20°N of the Eastern Hemisphere change to be westward and eastward,respectively.The LFO over the western Pacific weakens rapidly and one coming from middle and high latitudes propagates to the equator. From the phase compositions of streamline fields for the zonal wavenumber 1 of equatorial westward propa- gatirg LFO,it is found that the atmospheric heat source in the equator of the eastern Pacific(EEP)excites a series of the equatorial cyclones and anticyclones which move northward and westward and form the westward propagating LFO over the equator.With the wavelength of 20000km,this kind of equatorial wave is similar to the mixing Rossby-gravity wave.In its westward and northward movement,the circulation in East Asia is modified.This may be the mechanism of the influence of El Nino on the climate of China.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2018YFA0606403)the National Natural Science Foundation of China(Grant Nos.41731177 and 41790473)。
文摘During June-July 2020,the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River.The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief)variability,and there are altogether five cycles.It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics.As for the tropics,the biweekly meridional march and retreat of the western Pacific subtropical high(WPSH)is particularly evident.As for the extratropics,geopotential height anomalies near Lake Baikal are active.The former is attributed to the intensified biweekly activity of the southwest-northeast oriented EastAsian Pacific wave train(EAP)originating from the tropical western Pacific,while the latter is associated with the biweekly activities of the eastward propagating Eurasia mid-high latitudinal wave train and the westward propagating North Pacific wave train.Why the biweekly activities of these wave trains intensified is further diagnosed from the perspective of thermodynamical forcing and also from the modulation of interannual background on intraseasonal variability.It is found that the strongest recorded convection anchoring over the tropical western Indian Ocean(IO)triggers anomalous descent over the tropical western Pacific,which modulates the biweekly activity of the EAP.Meanwhile,the anomalous diabatic heating over the IO causes changes of the meridional thermodynamic contrast across the IO to the high latitudes,which modulates the extratropical wave trains.A further diagnosis of barotropic kinetic energy conversion suggests that the active occurrence of two extratropical biweekly wave trains is attributed to the increased efficiency of energy conversion from basic flow.The westward propagation of the extratropical North Pacific wave train is attributed to the weakened and northshifted upper-level westerly,which is caused by the SST warmth near the Kuroshio extension.
基金This work is supported partially by National Natural Science Foundation of China under program 4860210by partially the State Meteorological Administration Monsoon Research Funds.
文摘By using the upper-wind data from July 1980 to June 1983,the variations of the low-frequency oscillation (LFO)in the atmosphere before and during 1982 El Nino have been investigated.Before the El Nino,the LFO propagates from west to east over the equator of the Eastern Hemisphere and from east to west over 20°N. The eastward propagating LFO over the equator consists of zonal wavenumber 1 propagating eastward and zonal wavenumber 2 with a character of stationary wave.The oscillation of zonal wavenumber 2 can modulate the oscillation strength.After the onset of the El Nino,the propagating directions of the LFO over the equator and 20°N of the Eastern Hemisphere change to be westward and eastward,respectively.The LFO over the western Pacific weakens rapidly and one coming from middle and high latitudes propagates to the equator. From the phase compositions of streamline fields for the zonal wavenumber 1 of equatorial westward propa- gatirg LFO,it is found that the atmospheric heat source in the equator of the eastern Pacific(EEP)excites a series of the equatorial cyclones and anticyclones which move northward and westward and form the westward propagating LFO over the equator.With the wavelength of 20000km,this kind of equatorial wave is similar to the mixing Rossby-gravity wave.In its westward and northward movement,the circulation in East Asia is modified.This may be the mechanism of the influence of El Nino on the climate of China.