The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameter...The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameters and compositions of the desulfurization slurry were discussed.The results showed that the fine particles generated during the desulfurization process were closely related to the crystal characteristics in the desulfurization slurry by comparison of their morphology and elements. With the higher proportion of fine crystals in the desulfurization slurry,the number concentration of fine particles after desulfurization was increased and their particle sizes were smaller,indicating that the optimization of gypsum crystallization was beneficial for the reduction of the fine particle emission. The lower p H value and an optimal temperature of the desulfurization slurry were beneficial to restrain the generation of fine crystals in the desulfurization slurry. In addition,the higher concentrations of the Fe3+ions and the F- ions in the desulfurization slurry both promoted the generation of fine crystals with corresponding change of the morphology and the effect of the Fe3+ ions was more obvious.With the application of the desulfurization synergist additive,it was beneficial for the inhibition of fine crystals while the thinner crystals were generated.展开更多
采用Andersen8级撞击器对某300MW燃煤电厂湿法烟气脱硫(wet flue gas desulphurization,WFGD)系统前后的飞灰颗粒物进行采集,获得了烟气中飞灰颗粒物的质量浓度和粒径分布特性。采样工况分别为100%和70%锅炉负荷。使用场发射扫描电镜-...采用Andersen8级撞击器对某300MW燃煤电厂湿法烟气脱硫(wet flue gas desulphurization,WFGD)系统前后的飞灰颗粒物进行采集,获得了烟气中飞灰颗粒物的质量浓度和粒径分布特性。采样工况分别为100%和70%锅炉负荷。使用场发射扫描电镜-能谱分析,X射线荧光分析和电感耦合等离子体-原子发射光谱分析法对颗粒物进行了形貌分析和主、次量元素含量的检测。结果表明,WFGD系统入口飞灰质量粒径呈典型的双峰分布,峰值分别在1和3μm处,颗粒多呈规则球形,PM2.5与PM10质量比为0.434,飞灰总浓度约为85mg/m3标准状态;出口处飞灰质量粒径分布也呈现双峰性,其中细颗粒比例增大,PM2.5与PM10质量比为0.764,细颗粒间相互聚集粘连形成不规则的块状结构,飞灰总浓度在23mg/m3(标准状态)以下,总飞灰的脱除效率为74.5%,分级脱除效率随粒径减小而明显下降。经过WFGD系统后,细颗粒上S和Ca元素含量增大,而Al,Ba,Fe,Mn和Si元素的含量降低。计算表明,WFGD出口烟气中新增的石灰石与石膏颗粒分别占颗粒物质量的47.5%和7.9%。展开更多
在湿法烟气脱硫(wet flue gas desulfurization,WFGD)系统中进行了利用蒸汽相变原理协同脱除细颗粒的试验研究:通过添加蒸汽建立旋流板脱硫塔内蒸汽相变所需的过饱和水汽环境,利用过饱和水汽,以细颗粒为凝结核发生相变,促进细颗粒凝结...在湿法烟气脱硫(wet flue gas desulfurization,WFGD)系统中进行了利用蒸汽相变原理协同脱除细颗粒的试验研究:通过添加蒸汽建立旋流板脱硫塔内蒸汽相变所需的过饱和水汽环境,利用过饱和水汽,以细颗粒为凝结核发生相变,促进细颗粒凝结长大并由脱硫液、除雾器高效脱除;研究采用Ca(OH)2、NaOH、Na2CO3、NH3·H2O等4种不同脱硫剂时,WFGD系统对细颗粒的脱除性能,并考察了脱硫剂种类、液气比、蒸汽添加量等对细颗粒脱除效果的影响。结果表明,采用NaOH、Na2CO3作为脱硫剂对细颗粒的脱除效果明显优于Ca(OH)2和NH3·H2O;在脱硫塔进口烟气、塔内脱硫液进口上方添加蒸汽,建立过饱和水汽环境,可使细颗粒脱除效率显著增加;液气比的影响与脱硫塔内是否存在蒸汽相变有关。展开更多
以燃煤锅炉产生的含尘热烟气为对象,针对石灰石–石膏法湿法烟气脱硫(wet flue gas desulfurization,WFGD)工艺,采用Vaisala-HMT337型温湿度变送器等测试仪器,考察了脱硫操作条件对脱硫净烟气温湿度的影响规律;借助MATALBA软件计算分析...以燃煤锅炉产生的含尘热烟气为对象,针对石灰石–石膏法湿法烟气脱硫(wet flue gas desulfurization,WFGD)工艺,采用Vaisala-HMT337型温湿度变送器等测试仪器,考察了脱硫操作条件对脱硫净烟气温湿度的影响规律;借助MATALBA软件计算分析了脱硫净烟气与蒸汽在脱硫塔顶部的相变室内混合过程中过饱和水气环境的形成规律。研究结果表明:脱硫塔出口净烟气相对湿度随液气比和脱硫浆液温度的增大而提高,净烟气温度随液气比的增大而降低、随浆液温度的升高而升高;添加蒸汽后混合烟气的过饱和度随脱硫净烟气相对湿度和蒸汽添加量的增加而增大,随脱硫净化烟气温度的升高而减小。通过优化脱硫操作条件辅以添加适量蒸汽,可以在脱硫塔顶部的相变室建立细颗粒物凝结长大所需的过饱和水气环境,促进细颗粒物核化凝结长大并脱除。展开更多
Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurizati...Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry.展开更多
基金supported by the National Natural Science Foundation of China(No.21276049)the National Basic Research Program of China(973 Program)(No.2013CB228505)the Science and Technology Support Program of Jiangsu(No.BE2014856) for their financial support
文摘The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameters and compositions of the desulfurization slurry were discussed.The results showed that the fine particles generated during the desulfurization process were closely related to the crystal characteristics in the desulfurization slurry by comparison of their morphology and elements. With the higher proportion of fine crystals in the desulfurization slurry,the number concentration of fine particles after desulfurization was increased and their particle sizes were smaller,indicating that the optimization of gypsum crystallization was beneficial for the reduction of the fine particle emission. The lower p H value and an optimal temperature of the desulfurization slurry were beneficial to restrain the generation of fine crystals in the desulfurization slurry. In addition,the higher concentrations of the Fe3+ions and the F- ions in the desulfurization slurry both promoted the generation of fine crystals with corresponding change of the morphology and the effect of the Fe3+ ions was more obvious.With the application of the desulfurization synergist additive,it was beneficial for the inhibition of fine crystals while the thinner crystals were generated.
文摘采用Andersen8级撞击器对某300MW燃煤电厂湿法烟气脱硫(wet flue gas desulphurization,WFGD)系统前后的飞灰颗粒物进行采集,获得了烟气中飞灰颗粒物的质量浓度和粒径分布特性。采样工况分别为100%和70%锅炉负荷。使用场发射扫描电镜-能谱分析,X射线荧光分析和电感耦合等离子体-原子发射光谱分析法对颗粒物进行了形貌分析和主、次量元素含量的检测。结果表明,WFGD系统入口飞灰质量粒径呈典型的双峰分布,峰值分别在1和3μm处,颗粒多呈规则球形,PM2.5与PM10质量比为0.434,飞灰总浓度约为85mg/m3标准状态;出口处飞灰质量粒径分布也呈现双峰性,其中细颗粒比例增大,PM2.5与PM10质量比为0.764,细颗粒间相互聚集粘连形成不规则的块状结构,飞灰总浓度在23mg/m3(标准状态)以下,总飞灰的脱除效率为74.5%,分级脱除效率随粒径减小而明显下降。经过WFGD系统后,细颗粒上S和Ca元素含量增大,而Al,Ba,Fe,Mn和Si元素的含量降低。计算表明,WFGD出口烟气中新增的石灰石与石膏颗粒分别占颗粒物质量的47.5%和7.9%。
文摘在湿法烟气脱硫(wet flue gas desulfurization,WFGD)系统中进行了利用蒸汽相变原理协同脱除细颗粒的试验研究:通过添加蒸汽建立旋流板脱硫塔内蒸汽相变所需的过饱和水汽环境,利用过饱和水汽,以细颗粒为凝结核发生相变,促进细颗粒凝结长大并由脱硫液、除雾器高效脱除;研究采用Ca(OH)2、NaOH、Na2CO3、NH3·H2O等4种不同脱硫剂时,WFGD系统对细颗粒的脱除性能,并考察了脱硫剂种类、液气比、蒸汽添加量等对细颗粒脱除效果的影响。结果表明,采用NaOH、Na2CO3作为脱硫剂对细颗粒的脱除效果明显优于Ca(OH)2和NH3·H2O;在脱硫塔进口烟气、塔内脱硫液进口上方添加蒸汽,建立过饱和水汽环境,可使细颗粒脱除效率显著增加;液气比的影响与脱硫塔内是否存在蒸汽相变有关。
文摘以燃煤锅炉产生的含尘热烟气为对象,针对石灰石–石膏法湿法烟气脱硫(wet flue gas desulfurization,WFGD)工艺,采用Vaisala-HMT337型温湿度变送器等测试仪器,考察了脱硫操作条件对脱硫净烟气温湿度的影响规律;借助MATALBA软件计算分析了脱硫净烟气与蒸汽在脱硫塔顶部的相变室内混合过程中过饱和水气环境的形成规律。研究结果表明:脱硫塔出口净烟气相对湿度随液气比和脱硫浆液温度的增大而提高,净烟气温度随液气比的增大而降低、随浆液温度的升高而升高;添加蒸汽后混合烟气的过饱和度随脱硫净烟气相对湿度和蒸汽添加量的增加而增大,随脱硫净化烟气温度的升高而减小。通过优化脱硫操作条件辅以添加适量蒸汽,可以在脱硫塔顶部的相变室建立细颗粒物凝结长大所需的过饱和水气环境,促进细颗粒物核化凝结长大并脱除。
基金funded by the Slovenian Research Agency program P1-0143 and project L1-5446 and the young researchers programsupported by the EMPIR MercOx project(16ENV01).
文摘Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry.