Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanni...Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper(NCFP). Vacuum assisted infusion molding process(VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper(CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference(EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness(SE) at 8wt% fiber content, 35 d B and 30 d B, respectively, and reflection was the dominant shielding mechanism.展开更多
基金Funded by the National Natural Science Foundation of China(No.51373129)
文摘Carbon fibers(CFs) were coated with a nickel-phosphorus(Ni-P) film using an electroless plating process. The morphology, elemental composition and phases in the coating layer of the CFs were investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD), respectively. Wet paper-making method was used to prepare nickle coated carbon fiber paper(NCFP). Vacuum assisted infusion molding process(VAIMP) was employed to manufacture the NCFP reinforced epoxy composites, and carbon fiber paper(CFP) reinforced epoxy composites were also produced as a comparison. Electromagnetic interference(EMI) shielding properties of the composites were measured in the 3.22-4.9 GHz frequency range using waveguide method. Both NCFP and CFP reinforced epoxy composites of 0.5 mm thickness exhibited high EMI shielding effectiveness(SE) at 8wt% fiber content, 35 d B and 30 d B, respectively, and reflection was the dominant shielding mechanism.