期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Magnetic separation studies for a low grade siliceous iron ore sample 被引量:4
1
作者 Dwari Ranjan Kumar Rao Danda Srinivas Reddy Palli Sita Ram 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期1-5,共5页
Investigations were carried out, on a low grade siliceous iron ore sample by magnetic separation, to establish its amenability for physical beneficiation. Mineralogical studies revealed that the sample consists of mag... Investigations were carried out, on a low grade siliceous iron ore sample by magnetic separation, to establish its amenability for physical beneficiation. Mineralogical studies revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as silicates as well as carbonates form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. It was possible to obtain a magnetic concentrate of 67% Fe by recovering 90% of iron values at below 200 lm size. 展开更多
关键词 Iron ore Magnetite Characterization Dry and wet magnetic separation
下载PDF
Investigation on steelmaking dust recycling and iron oxide red preparing
2
作者 Pingfeng Fu Qiang Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期24-28,共5页
To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carded out to obtain the particle size distribution, mineralogy,... To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carded out to obtain the particle size distribution, mineralogy, morphology, and the chemical composition of the dust. The dust with a total Fe content of 64.08wt% has coarse metallic iron, magnetite and hematite grains, while free clay minerals with a size of 〈38 μm are mainly iosidefite, calcium silicate, and calcite, which are conglomerated to each other. By following the procedures of wet magnetic separation, acid leaching, and oxidization calcination, magnetic materials were recycled and further prepared as iron oxide red with a productivity of 0.54 ton per unit ton of the dust. Middle iron concentrate with an Fe content of 65.92wt% can be reused as feeding material in the ironmaking industry. Additionally, washed water from acid leaching with an Fe^3+ ion content of less than 5 g·L^-1 was recovered as feeding water in the wet magnetic separation procedure. 2008 University of Science and Technology Beijing. All fights reserved. 展开更多
关键词 steelmaking dust iron oxide red wet magnetic separation acid leaching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部