Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive ...Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive MIMO,CF MIMO allows geographically distributed access points(APs)to serve all users on the same time-frequency resource with spatial multiplexing techniques,resulting in better performance in terms of both spectral efficiency and coverage enhancement.However,the performance gain is achieved at the expense of deploying more APs with high cost and power consumption.To address this issue,the recently proposed reconfigurable intelligent surface(RIS)technique stands out with its unique advantages of low cost,low energy consumption and programmability.In this paper,we provide an overview of RIS-assisted CF MIMO and its interaction with advanced optimization designs and novel applications.Particularly,recent studies on typical performance metrics such as energy efficiency(EE)and spectral efficiency(SE)are surveyed.Besides,the application of RIS-assisted CF MIMO techniques in various future communication systems is also envisioned.Additionally,we briefly discuss the technical challenges and open problems for this area to inspire research direction and fully exploit its potential in meeting the demands of future wireless communication systems.展开更多
The rmomechanical phenomens occurring between friction pairs greatly changethe distributions of lining pressure and friction surface temperature of a multiple disc wet brake.It has become one of the main causes of bra...The rmomechanical phenomens occurring between friction pairs greatly changethe distributions of lining pressure and friction surface temperature of a multiple disc wet brake.It has become one of the main causes of brake failure. In order to understand these thermomechanicalphenomena, several design and material factors that have great influence on thermomechanicalphenomena, such as heat transfer coefficient, friction factor; sliding velocity, initial liningpressure and so on, are analyzed. An isothermal design method is proposed for designing a multipledisc wet brake.展开更多
Wet compression is an effective way to enhance the performance of gas turbines and it has attracted a good deal of attention in recent years. The one sidedness and inaccuracy of previous studies,which took concentrati...Wet compression is an effective way to enhance the performance of gas turbines and it has attracted a good deal of attention in recent years. The one sidedness and inaccuracy of previous studies,which took concentration gradient as mass transfer potential are discussed. The mass transfer process is analyzed from the viewpoint of non equilibrium thermodynamics,by taking generalized thermodynamic driving force as mass transfer potential,and the corresponding mass transfer coefficient is obtained using the heat and mass transfer equilibrium occurring between moist air and water droplets at wet bulb temperature for the sake of avoiding complex tests and providing more accurate formulas. A mathematical model of wet compression is therefore established,and the general laws of wet compression are investigated. The results show that the performance of atomizer is critical for wet compression and wet compression is more suitable for compressors with higher pressure ratio and longer compression time.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金supported in part by ZTE Industry-University-Institute Co⁃operation Funds.
文摘Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive MIMO,CF MIMO allows geographically distributed access points(APs)to serve all users on the same time-frequency resource with spatial multiplexing techniques,resulting in better performance in terms of both spectral efficiency and coverage enhancement.However,the performance gain is achieved at the expense of deploying more APs with high cost and power consumption.To address this issue,the recently proposed reconfigurable intelligent surface(RIS)technique stands out with its unique advantages of low cost,low energy consumption and programmability.In this paper,we provide an overview of RIS-assisted CF MIMO and its interaction with advanced optimization designs and novel applications.Particularly,recent studies on typical performance metrics such as energy efficiency(EE)and spectral efficiency(SE)are surveyed.Besides,the application of RIS-assisted CF MIMO techniques in various future communication systems is also envisioned.Additionally,we briefly discuss the technical challenges and open problems for this area to inspire research direction and fully exploit its potential in meeting the demands of future wireless communication systems.
文摘The rmomechanical phenomens occurring between friction pairs greatly changethe distributions of lining pressure and friction surface temperature of a multiple disc wet brake.It has become one of the main causes of brake failure. In order to understand these thermomechanicalphenomena, several design and material factors that have great influence on thermomechanicalphenomena, such as heat transfer coefficient, friction factor; sliding velocity, initial liningpressure and so on, are analyzed. An isothermal design method is proposed for designing a multipledisc wet brake.
文摘Wet compression is an effective way to enhance the performance of gas turbines and it has attracted a good deal of attention in recent years. The one sidedness and inaccuracy of previous studies,which took concentration gradient as mass transfer potential are discussed. The mass transfer process is analyzed from the viewpoint of non equilibrium thermodynamics,by taking generalized thermodynamic driving force as mass transfer potential,and the corresponding mass transfer coefficient is obtained using the heat and mass transfer equilibrium occurring between moist air and water droplets at wet bulb temperature for the sake of avoiding complex tests and providing more accurate formulas. A mathematical model of wet compression is therefore established,and the general laws of wet compression are investigated. The results show that the performance of atomizer is critical for wet compression and wet compression is more suitable for compressors with higher pressure ratio and longer compression time.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.