期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial Variation of Dissolved Organic Carbon in Soils of Riparian Wetlands and Responses to Hydro-geomorphologic Changes in Sanjiang Plain, China 被引量:7
1
作者 XI Min KONG Fanlong +2 位作者 LYU Xianguo JIANG Ming LI Yue 《Chinese Geographical Science》 SCIE CSCD 2015年第2期174-183,共10页
Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli R... Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered. 展开更多
关键词 dissolved organic carbon(DOC) riparian wetlands spatial variation hydro-geomorphologic changes Sanjiang Plain
下载PDF
Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands 被引量:7
2
作者 Tanveer Saeed Abdullah Al-Muyeed +2 位作者 Rumana Afrin Habibur Rahman Guangzhi Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期726-736,共11页
This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangla... This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD](m2.day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efflciencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation. 展开更多
关键词 constructed wetlands loading fluctuation media nitrogen organics seasonal variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部