期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Historical Evolution of Mariculture in China During Past 40 Years and Its Impacts on Eco-environment 被引量:4
1
作者 LIANG Yinxiu CHENG Xianwei +4 位作者 ZHU Hui Brian SHUTES YAN Baixing ZHOU Qingwei YU Xiangfei 《Chinese Geographical Science》 SCIE CSCD 2018年第3期363-373,共11页
The rapid development of mariculture in China in recent decades has satisfied people's demand of seafood, and has made a great contribution to economic development. However, mariculture has also caused some negati... The rapid development of mariculture in China in recent decades has satisfied people's demand of seafood, and has made a great contribution to economic development. However, mariculture has also caused some negative impacts on the eco-environment. By statistically analyzing national data(as well as data for four main provinces) regarding the mariculture area and cultivation species in China since reform and opening up, the historical evolution of mariculture during the past 40 years was analyzed, the driving factors related to policy, market and technology innovation were discussed, and the potential impacts of mariculture on the coastal eco-environment were also illustrated. The statistical results indicated that the maricultural area increased radically during the past 40 years, from 1979(116.47 × 10~3 ha) to 2012(2205.65 × 10~3 ha), with an increase of nearly 20-fold. Shandong Province represented the fastest-growing region, with an increase of 31-fold. Moreover, the cultivated species had gradually become diversified. Initially, shellfish and algae were major species, and then it developed to various species including fish, and currently shellfish and crustaceans were the major species. The development of mariculture was driven by government policies, market economy and technology innovation. Rapid development of mariculture also caused significantly adverse impacts on the eco-environment of the coastal regions. For example, the sea reclamation for mariculture decreased the area and function of coastal wetlands and the contaminants originating from mariculture destroyed the coastal aquatic environment. Fortunately, the implementation of ‘13 th Five-Year Fisheries Planning' is expected to help both improve the seafood quality and reduce the contamination in coastal aquatic environment. This current study will provide reference for management and structure adjustment of mariculture in the future. 展开更多
关键词 mariculture reclamation coastal wetlands aquatic environment pollution
下载PDF
Hybrid constructed wetlands for highly polluted river water treatment and comparison of surface-and subsurface-flow cells 被引量:14
2
作者 Yucong Zheng Xiaochang Wang +2 位作者 Jiaqing Xiong Yongjun Liu Yaqian Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期749-756,共8页
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water befo... A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface- and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m3/(m2.day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ~ 4.5%, 93.4% + 2.1%, 54.0% + 6.3%, 53.9% ~ 6.0% and 69.4% :t: 4.6%, respectively, which brought about an effective improvement of the fiver water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. 展开更多
关键词 constructed wetland surface-flow subsurface-flow polluted river water treatment
原文传递
Contaminant removal from low-concentration polluted river water by the bio-rack wetlands 被引量:4
3
作者 Ji Wang Lanying Zhang +2 位作者 Shaoyong Lu Xiangcan Jint Shu Gan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第6期1006-1013,共8页
The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and be... The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and between a bio-rack system and control system was conducted on a small-scale (500 mm length × 400 mm width × 400 mm height) to evaluate the decontamination effects of four different wetland plants.There was generally a significant difference in the removal of total nitrogen (TN),ammonia nitrogen (NH 3-N) and total phosphorus (TP),but no significant difference in the removal of permanganate index (COD Mn) between the bio-rack wetland and control system.Bio-rack wetland planted with Thalia dealbata had higher nutrient removal rates than wetlands planted with other species.Plant fine-root (root diameter 3 mm) biomass rather than total plant biomass was related to nutrient removal efficiency.The study suggested that the nutrient removal rates are influenced by plant species,and high fine-root biomass is an important factor in selecting highly effective wetland plants for a bio-rack system.According to the mass balance,the TN and TP removal were in the range of 61.03-73.27 g/m^2 and 4.14-5.20 g/m^2 in four bio-rack wetlands during the whole operational period.The N and P removal by plant uptake constituted 34.9%-43.81% of the mass N removal and 62.05%-74.81% of the mass P removal.The study showed that the nitrification/denitrification process and plant uptake process are major removal pathways for TN,while plant uptake is an effective removal pathway for TP. 展开更多
关键词 bio-rack constructed wetland fine-root biomass low-concentration polluted river water plants uptake
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部