Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout ...The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.展开更多
Upon the basis of comprehensive survey on the bio-resources of Zhengzhou Yellow River Wetland Nature Reserve,we analyzed the relationship between wetland ecology and bio-resource protection,the problems encountering w...Upon the basis of comprehensive survey on the bio-resources of Zhengzhou Yellow River Wetland Nature Reserve,we analyzed the relationship between wetland ecology and bio-resource protection,the problems encountering wetland development and protection,and further put forward corresponding protective measures.展开更多
[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi P...[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.展开更多
Based on geological characteristic of Mi River Wetland Park in Linqu of Shandong,the paper had illustrated historical and cultural spirits of Linqu,and then proposed planning strategies and contents of Mi River Wetlan...Based on geological characteristic of Mi River Wetland Park in Linqu of Shandong,the paper had illustrated historical and cultural spirits of Linqu,and then proposed planning strategies and contents of Mi River Wetland Park.It discussed new approaches for wetland restoration and landscape construction from the perspectives of ecological restoration of wetland system,overall construction of leisure system,and full display of regional characteristic.The construction of wetland system laid stress on water system design,terrain treatment,vegetation construction,and biological diversity creation.Wetland system would be overlaid with leisure system,divided into wetland leisure zone,wetland entertainment zone,humanity landscape zone,wetland science popular zone and wetland experience zone,all of which would be constructed with characteristic respectively.On the basis of site character,the paper had searched an energy balance and substance transformation method between rivers,plants,earth and humans,of certain practicality.展开更多
The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. Th...The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.展开更多
The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this st...The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.展开更多
Yellow River delta (YRD) is one of the biggest deltas that there is a large area of wetland in the world. Thanks to soil (sands) sediment carried by the Yellow River, there was averagely the newly formed land 21.3...Yellow River delta (YRD) is one of the biggest deltas that there is a large area of wetland in the world. Thanks to soil (sands) sediment carried by the Yellow River, there was averagely the newly formed land 21.3 km^2 in YRD. During the development of petroleum industry and urban expansion, wetlands were degraded due to population growth, irrational land use, in addition to adverse natural eco-environment such as lower precipitation, higher soil evaporation and soil salinazation. The major ecological measures to restore degraded wetland concerned with ensuring water supply, especially establishing perfect irrigation works; protecting virgin plant communities and assisting them to regenerate by the way of site preparation, improving living surroundings; introducing salt-tolerant plants to increase vegetation species and plant coverage, thereby enhancing the capability of wetland to combat contamination and pollution through plant remediation, uptake, absorption, etc. Finally making a comprehensive land use plan, accordingly removing deleterious facilities.展开更多
The Lhasa River Basin is one of the typical distribution regions of alpine wetlands on the Tibetan Plateau. It is very important to get a better understanding of the background and characteristics of alpine wetland fo...The Lhasa River Basin is one of the typical distribution regions of alpine wetlands on the Tibetan Plateau. It is very important to get a better understanding of the background and characteristics of alpine wetland for monitoring, protection and utilization. Wetland construction and distribution in the basin were analyzed based on multi-source data including field investigation data, CBERS remote sensing data and other thematic data provided by 3S technology. The results are (1) the total area of wetlands is 209,322.26 hm^2, accounting for 6.37% of the total land area of the basin. The wetlands are mainly dominated by natural wetland, with artificial wetland occupying only 1.09% of the wetland area; marsh wetland is the principal part of natural wetland, dominated by Kobresia littledalei swampy meadow which is distributed in the river source area and upstream of Chali, Damshung and Medro Gongkar counties. The ratio and type of wetlands in different counties differ significantly, which are widely distributed in Chali and Damshung counties (accounting for 62% of the total wetland area). (2) The concentrated vertical distribution of wetlands is at an elevation of 3600-5100 m The wetlands are widely distributed throughout the Yarlung Zangbo River Valley from river source to river mouth into the Yarlung Zangbo River. Marsh wetland is dominant in the source area and upstream of the river, with the mosaic distribution of lakes, Kobresia litUedalei and Carex moorcroftii swampy meadow, shrubby swamp and river; as for the middle-down streams, the primary types are river wetland and flooded wetland. The distribution is in a mosaic pattern of river, Kobresia humilis and Carex moorcroftii swampy meadow, Phragmites australis and subordinate grass marsh, flooded wetland and artificial wetland.展开更多
[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao Ri...[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area.展开更多
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil propertie...To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P < 0.001). The SOC concentrations were in the order: oil-polluted wetland > corn field > paddy field > forest land > reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4^+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4^+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.展开更多
Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have und...Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have undergone changes of landscape fragmentation, vegetation degradation, pollution, species reduction, and harmful exotic species invasion. These changes have influenced sustainable and healthy development of marine economy of the Yellow River Delta. To protect natural ecological environment of the Yellow River Delta, the authors recommended that it should establish and improve policies, laws and regulations of wetland protection; carry out wetland resource investigation and assessment and monitoring; strengthen comprehensive protection and control of wetland; reduce wetland degradation and promote sustainable use of wetland.展开更多
Oil contaminated soil was collected from Huangpu River-Yangtze River estuary wetland, with the aim of isolating oil-degrading microorganisms and evaluating their ability to degrade diesel. Three bacterial strains were...Oil contaminated soil was collected from Huangpu River-Yangtze River estuary wetland, with the aim of isolating oil-degrading microorganisms and evaluating their ability to degrade diesel. Three bacterial strains were discovered and identified by sequencing their 16S rDNA genes, two were Pseudomonas and one was Alcaligcnes. The proper growth conditions of each bacterium were measured and presented for diesel biodegradation. Biodegradation assays revealed that the degradation rates of three bacterial strains were 42.5%, 14.6% and 15.9% in 7 d respectively. They all play an important role on the nalkanes within the range of C16-C25 components of diesel. The results indicated that the oil-degraders can adapt to degrade diesel. The bacterial strains can be used in wetland diesel pollution control.展开更多
From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project ...From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project of Xinxuehe artificial wetland as reference. The virtual data of quantity and quality of inflow and the quality of outflow of Xiaosha River artificial wetland are built up according to the running experience, forecasting model and theoretical method of the reference project as well as the comparison analysis of the similarity and difference of the two example projects. The virtual data are used to study the building of forecasting model of BP neural network of Xiaosha River artificial wetland.展开更多
The Ussuri/Wusuli River basin joins the border between the Northeast region of Heilongjiang Province of China and the Far East region of Russia. The watershed consists of approximately 26 000 000 ha and the shared bor...The Ussuri/Wusuli River basin joins the border between the Northeast region of Heilongjiang Province of China and the Far East region of Russia. The watershed consists of approximately 26 000 000 ha and the shared border stretches more than 1100 km. The Ussuri River forms part of the border between Russia and China. Two thirds of the watershed ecosystem is in Russia, one third in China. Khanka / Xingkai Lake is the border Lake of Russia and China, with the area of 4380 km2. The Ussuri / Wusuli River Basin is rich in wetland resources, including surface water resources and wetlands. There are about more than 100 rivers belonging to one and two branch rivers, wetlands are mainly distributed in the Sanjiang Plain in China, which is the largest marsh area in China, with an area of 114 million ha. Human activities and agriculture reclamation for many years have led to many environment problems: 1)decreasing of wetland area led to loss of wetland environment functions, decreasing of biodiversity and increasing the number of natural disasters such as disastrous drought and waterlogging, which affect directly sustainable utilization of resources and economical development. 2) water supply is not evenly distributed, water pollution in rivers, marshes and lakes are more serious than before. Based on above study, some suggests of sustainable development in the basin have been made, which include: 1) developing the international wetland natural reserve and domestic comprehensive protected area to prevent wetlands from destruction and disturbance by human activities, 2) strengthening the protection and management of wetlands in lake shorelines and riparian zones (rivers and streams) to prevent water quality of rivers and lakes from pollution, 3) restoring the destroyed marsh in riparian zones and the island like forests" of wetlands 4) developing positively transnational ecological tourist trade to promote the economic development in the river basin scope, 5) developing international cooperation research to promote sustainable utilization and protection of wetland resources.展开更多
[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using tre...[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.展开更多
Elemental(TOC,TN,C/N)and stable carbon isotopic(δ^13C)compositions and long-chain alkane(n C16-38)concentrations were measured for eight major plants and a sediment core collected from the Yellow River estuarine wetl...Elemental(TOC,TN,C/N)and stable carbon isotopic(δ^13C)compositions and long-chain alkane(n C16-38)concentrations were measured for eight major plants and a sediment core collected from the Yellow River estuarine wetlands.Our results indicate that both C3(-25.4‰to-29.6‰)and C4(-14.2‰to-15.0‰)plants are growing in the wetlands and C3 plants are the predominant species.The biomass of the wetland plants had similar organic carbon(35.5-45.8%)but very different organic nitrogen(0.35-4.15%)contents.Both C3 and C4 plants all contained long-chain alkanes with strong odd-to-even carbon numbered chain predominance.Phragmites australis,a dominant C3 plant contained mainly n C29 and n C31 homologues.Aeluropus littoralis,an abundant C4 plant were concentrated with n C27 and n C29 homologues.Organic matter preserved in the Yellow River estuarine sediments showed strong terrestrial signals(C/N=11-16,δ^13C=-22.0‰to-24.3‰).The distribution of long-chain n-alkanes in sediments also showed strong odd-to-even carbon chain predominance with n C29 and n C31 being the most abundant homologues.These results suggest that organic matter preserved in the Yellow River estuarine sediments were influenced by the wetland-derived organic matter,mainly C3 plants.The Yellow River estuarine wetland plants could play important role affecting both the carbon and nutrient cycling in the estuary and adjacent coastal waters.展开更多
The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes o...The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.展开更多
The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote se...The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote sensing and GIS, we constructed the type change tracker model with sliding window technique and spatially mor- phological rule. The suitable scale and optimum scale of the fragmentation model of wetland landscape in the middle reaches of the Heihe River were determined by the area frequency statistics method, Chi-square distribution normal- ized scale variance, fractal dimension and diversity index. By integrating type change tracker model and the optimum scale with GIS spatial analysis, the spatial distribution characteristics of wetland landscape fragmentation in different periods and the related spatial-temporal change process were clarified. The results showed that (1) the type change tracker model, which analyzes the spatial pattern of wetland fragmentation on the pixel level, is better than the tradi- tional wetland fragmentation analysis on the landscape and patch levels; (2) The suitable scale for the wetland frag- mentation ranged from 150 rex150 m to 450 mx450 m and the optimum scale was 250 mx250 m in the middle reaches of the Heihe River; and (3) In the past 35 years, the total wetland area decreased by 23.2% and the frag- mentatJon of wetland markedly increased in the middle reaches of the Heihe River. The areas of core wetlands re- duced by 12.8% and the areas of perforated, edge and patch wetlands increased by 0.8%, 3.1% and 8.9%, respec- tively. The process of wetland fragmentation in the research region showed the order of core wetland, perforated or edge wetland, patch wetland or non-wetland. The results of this study would provide a reference for the protection, utilization and restoration of limited wetland resources and for the sustainable development of the regional eco-environment in the Heihe River Basin.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
文摘The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.
基金Supported by Program for Decision Making of Henan Province(B339)Key R&D Program of Zhengzhou Science and Technology Bureau(10PTGN449-5)~~
文摘Upon the basis of comprehensive survey on the bio-resources of Zhengzhou Yellow River Wetland Nature Reserve,we analyzed the relationship between wetland ecology and bio-resource protection,the problems encountering wetland development and protection,and further put forward corresponding protective measures.
基金Supported by National Natural Science Foundation of China(40871119)Key Science and Technology Program of Shaanxi Province,China(2007K01-15-1)~~
文摘[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.
文摘Based on geological characteristic of Mi River Wetland Park in Linqu of Shandong,the paper had illustrated historical and cultural spirits of Linqu,and then proposed planning strategies and contents of Mi River Wetland Park.It discussed new approaches for wetland restoration and landscape construction from the perspectives of ecological restoration of wetland system,overall construction of leisure system,and full display of regional characteristic.The construction of wetland system laid stress on water system design,terrain treatment,vegetation construction,and biological diversity creation.Wetland system would be overlaid with leisure system,divided into wetland leisure zone,wetland entertainment zone,humanity landscape zone,wetland science popular zone and wetland experience zone,all of which would be constructed with characteristic respectively.On the basis of site character,the paper had searched an energy balance and substance transformation method between rivers,plants,earth and humans,of certain practicality.
基金the National "11th Five Year" Plan of Science and technology (2006BAD26B06,2006BAD03A1205) Ecological Restore Project of Water Resources Ministry of China (2006-2008)
文摘The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.
基金Under the auspices of National Key Research&Development Program of China(No.2017YFC0505901,2017YFA0604904)
文摘The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km^2, while that of natural wetlands decreased by 954.03 km^2 whereas human-made wetlands increased by 851.06 km^2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.
基金Supported by the National Tenth Five-year Key Scientific & Technological Project (Grant No. 2004BA516A13)Shandong Provincial Key Scientific & Technological Project of Plant Community Restoration in Yellow River Delta Region
文摘Yellow River delta (YRD) is one of the biggest deltas that there is a large area of wetland in the world. Thanks to soil (sands) sediment carried by the Yellow River, there was averagely the newly formed land 21.3 km^2 in YRD. During the development of petroleum industry and urban expansion, wetlands were degraded due to population growth, irrational land use, in addition to adverse natural eco-environment such as lower precipitation, higher soil evaporation and soil salinazation. The major ecological measures to restore degraded wetland concerned with ensuring water supply, especially establishing perfect irrigation works; protecting virgin plant communities and assisting them to regenerate by the way of site preparation, improving living surroundings; introducing salt-tolerant plants to increase vegetation species and plant coverage, thereby enhancing the capability of wetland to combat contamination and pollution through plant remediation, uptake, absorption, etc. Finally making a comprehensive land use plan, accordingly removing deleterious facilities.
基金The National Key Technology Research and Development Program,No.2007BAC06B03National Basic Research Program of China,No.2005CB422000
文摘The Lhasa River Basin is one of the typical distribution regions of alpine wetlands on the Tibetan Plateau. It is very important to get a better understanding of the background and characteristics of alpine wetland for monitoring, protection and utilization. Wetland construction and distribution in the basin were analyzed based on multi-source data including field investigation data, CBERS remote sensing data and other thematic data provided by 3S technology. The results are (1) the total area of wetlands is 209,322.26 hm^2, accounting for 6.37% of the total land area of the basin. The wetlands are mainly dominated by natural wetland, with artificial wetland occupying only 1.09% of the wetland area; marsh wetland is the principal part of natural wetland, dominated by Kobresia littledalei swampy meadow which is distributed in the river source area and upstream of Chali, Damshung and Medro Gongkar counties. The ratio and type of wetlands in different counties differ significantly, which are widely distributed in Chali and Damshung counties (accounting for 62% of the total wetland area). (2) The concentrated vertical distribution of wetlands is at an elevation of 3600-5100 m The wetlands are widely distributed throughout the Yarlung Zangbo River Valley from river source to river mouth into the Yarlung Zangbo River. Marsh wetland is dominant in the source area and upstream of the river, with the mosaic distribution of lakes, Kobresia litUedalei and Carex moorcroftii swampy meadow, shrubby swamp and river; as for the middle-down streams, the primary types are river wetland and flooded wetland. The distribution is in a mosaic pattern of river, Kobresia humilis and Carex moorcroftii swampy meadow, Phragmites australis and subordinate grass marsh, flooded wetland and artificial wetland.
基金Supported by Scientific Research Project of National Ocean Public Welfare (200805070,200905009-5,200905020)
文摘[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area.
基金Under the auspices of National Basic Research Program of China(No.2012CB956100)National Natural Science Foundation of China(No.41301085)
文摘To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P < 0.001). The SOC concentrations were in the order: oil-polluted wetland > corn field > paddy field > forest land > reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4^+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4^+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.
基金Supported by the Open Research Fund Program of the Key Laboratory of Marine Ecology and Environmental Science and Engineering,SOA (MESE-2012-04)the Special Funds Projects for Public Welfare of National Ocean Industries (201105005)
文摘Coastal wetlands in the Yellow River Delta are typical new wetland ecosystems in warm temperate zone. In recent years, influenced by natural and human factors, these coastal wetlands in the Yellow River Delta have undergone changes of landscape fragmentation, vegetation degradation, pollution, species reduction, and harmful exotic species invasion. These changes have influenced sustainable and healthy development of marine economy of the Yellow River Delta. To protect natural ecological environment of the Yellow River Delta, the authors recommended that it should establish and improve policies, laws and regulations of wetland protection; carry out wetland resource investigation and assessment and monitoring; strengthen comprehensive protection and control of wetland; reduce wetland degradation and promote sustainable use of wetland.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40973073,40830744)the Shanghai Leading Academic Discipline Project(Grant No.S30109)the Innovation Foundation of Shanghai University
文摘Oil contaminated soil was collected from Huangpu River-Yangtze River estuary wetland, with the aim of isolating oil-degrading microorganisms and evaluating their ability to degrade diesel. Three bacterial strains were discovered and identified by sequencing their 16S rDNA genes, two were Pseudomonas and one was Alcaligcnes. The proper growth conditions of each bacterium were measured and presented for diesel biodegradation. Biodegradation assays revealed that the degradation rates of three bacterial strains were 42.5%, 14.6% and 15.9% in 7 d respectively. They all play an important role on the nalkanes within the range of C16-C25 components of diesel. The results indicated that the oil-degraders can adapt to degrade diesel. The bacterial strains can be used in wetland diesel pollution control.
文摘From the viewpoint of systems science, this article takes Xiaosha River artificial wetland under planning and construction as object of study based on the systems theory and takes the accomplished and running project of Xinxuehe artificial wetland as reference. The virtual data of quantity and quality of inflow and the quality of outflow of Xiaosha River artificial wetland are built up according to the running experience, forecasting model and theoretical method of the reference project as well as the comparison analysis of the similarity and difference of the two example projects. The virtual data are used to study the building of forecasting model of BP neural network of Xiaosha River artificial wetland.
基金Under the auspises of the Major Project of the Chinese Academy of Sciences:(KZ951-B1-201-04).
文摘The Ussuri/Wusuli River basin joins the border between the Northeast region of Heilongjiang Province of China and the Far East region of Russia. The watershed consists of approximately 26 000 000 ha and the shared border stretches more than 1100 km. The Ussuri River forms part of the border between Russia and China. Two thirds of the watershed ecosystem is in Russia, one third in China. Khanka / Xingkai Lake is the border Lake of Russia and China, with the area of 4380 km2. The Ussuri / Wusuli River Basin is rich in wetland resources, including surface water resources and wetlands. There are about more than 100 rivers belonging to one and two branch rivers, wetlands are mainly distributed in the Sanjiang Plain in China, which is the largest marsh area in China, with an area of 114 million ha. Human activities and agriculture reclamation for many years have led to many environment problems: 1)decreasing of wetland area led to loss of wetland environment functions, decreasing of biodiversity and increasing the number of natural disasters such as disastrous drought and waterlogging, which affect directly sustainable utilization of resources and economical development. 2) water supply is not evenly distributed, water pollution in rivers, marshes and lakes are more serious than before. Based on above study, some suggests of sustainable development in the basin have been made, which include: 1) developing the international wetland natural reserve and domestic comprehensive protected area to prevent wetlands from destruction and disturbance by human activities, 2) strengthening the protection and management of wetlands in lake shorelines and riparian zones (rivers and streams) to prevent water quality of rivers and lakes from pollution, 3) restoring the destroyed marsh in riparian zones and the island like forests" of wetlands 4) developing positively transnational ecological tourist trade to promote the economic development in the river basin scope, 5) developing international cooperation research to promote sustainable utilization and protection of wetland resources.
基金Supported by the Project for Science and Technology Innovation Team of Zhejiang Province,China
文摘[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.
基金Financial support for this work was provided by the National Natural Science Foundation of China (Grants # 41476057, 41521064)
文摘Elemental(TOC,TN,C/N)and stable carbon isotopic(δ^13C)compositions and long-chain alkane(n C16-38)concentrations were measured for eight major plants and a sediment core collected from the Yellow River estuarine wetlands.Our results indicate that both C3(-25.4‰to-29.6‰)and C4(-14.2‰to-15.0‰)plants are growing in the wetlands and C3 plants are the predominant species.The biomass of the wetland plants had similar organic carbon(35.5-45.8%)but very different organic nitrogen(0.35-4.15%)contents.Both C3 and C4 plants all contained long-chain alkanes with strong odd-to-even carbon numbered chain predominance.Phragmites australis,a dominant C3 plant contained mainly n C29 and n C31 homologues.Aeluropus littoralis,an abundant C4 plant were concentrated with n C27 and n C29 homologues.Organic matter preserved in the Yellow River estuarine sediments showed strong terrestrial signals(C/N=11-16,δ^13C=-22.0‰to-24.3‰).The distribution of long-chain n-alkanes in sediments also showed strong odd-to-even carbon chain predominance with n C29 and n C31 being the most abundant homologues.These results suggest that organic matter preserved in the Yellow River estuarine sediments were influenced by the wetland-derived organic matter,mainly C3 plants.The Yellow River estuarine wetland plants could play important role affecting both the carbon and nutrient cycling in the estuary and adjacent coastal waters.
基金supported by the Open Fund for Field Stations of Institute of Geographic Sciences and Natural Resources Research,CAS and the Ocean Public Welfare Scientific Research Project(Grant No.201105020)
文摘The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.
基金supported by the National Natural Science Foundation of China (41261047, 41201196, 41271133)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University (NWNU-LKQN-11-11)
文摘The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote sensing and GIS, we constructed the type change tracker model with sliding window technique and spatially mor- phological rule. The suitable scale and optimum scale of the fragmentation model of wetland landscape in the middle reaches of the Heihe River were determined by the area frequency statistics method, Chi-square distribution normal- ized scale variance, fractal dimension and diversity index. By integrating type change tracker model and the optimum scale with GIS spatial analysis, the spatial distribution characteristics of wetland landscape fragmentation in different periods and the related spatial-temporal change process were clarified. The results showed that (1) the type change tracker model, which analyzes the spatial pattern of wetland fragmentation on the pixel level, is better than the tradi- tional wetland fragmentation analysis on the landscape and patch levels; (2) The suitable scale for the wetland frag- mentation ranged from 150 rex150 m to 450 mx450 m and the optimum scale was 250 mx250 m in the middle reaches of the Heihe River; and (3) In the past 35 years, the total wetland area decreased by 23.2% and the frag- mentatJon of wetland markedly increased in the middle reaches of the Heihe River. The areas of core wetlands re- duced by 12.8% and the areas of perforated, edge and patch wetlands increased by 0.8%, 3.1% and 8.9%, respec- tively. The process of wetland fragmentation in the research region showed the order of core wetland, perforated or edge wetland, patch wetland or non-wetland. The results of this study would provide a reference for the protection, utilization and restoration of limited wetland resources and for the sustainable development of the regional eco-environment in the Heihe River Basin.