This paper presents a comparative study of English and Chinese wh-questions and aims at providing explanations of distinctions between English and Chinese wh-questions.The different feature strength of the position C ...This paper presents a comparative study of English and Chinese wh-questions and aims at providing explanations of distinctions between English and Chinese wh-questions.The different feature strength of the position C causes the different sentence pattern of Chinese and English wh-questions and the aim is to meet the requirement of feature-checking.The overt whmovement is constrained by some principles.Then Do Chinese learners of English also have this principle in their mind? Through the experiment,the study compared the rates of accuracy of the Chinese group and the native controls.展开更多
Fatigue is best defined as difficulty in initiating or sustaining voluntary activities, and is thought to be accompanied by deterioration of performance. Fatigue can be caused by many factors such as physical and ment...Fatigue is best defined as difficulty in initiating or sustaining voluntary activities, and is thought to be accompanied by deterioration of performance. Fatigue can be caused by many factors such as physical and mental stress, disturbance in the circadian rhythm, and various diseases. For example, following the flu or other types of infections, everyone has experienced a sense of fatigue that can last for days or weeks. The fatigue sensation is thought to be one of the signals for the body to suppress physical activity in order to regain health. The mechanism of induction of the fatigue sensation following viral infection has not been well understood. Although fatigue was once thought to be caused by fever, our recent study with an animal model of viral infection demonstrated that the fatigue sensation is caused not by fever, but rather,展开更多
Land was important--in the course of spreading and seeking new converts--for both Missionaries of Africa (White Fathers) and Church Missionary Society (C.M.S.) in Buha, Western Tanzania. This paper examines the la...Land was important--in the course of spreading and seeking new converts--for both Missionaries of Africa (White Fathers) and Church Missionary Society (C.M.S.) in Buha, Western Tanzania. This paper examines the land question as one of the challenges that the White Fathers encountered in their attempt to evangelize communities in Western Tanzania. I argue that the land question remained throughout the late-colonial period one of the unresolved issues, and at some mission stations, impeded the activities of the White Fathers and C.M.S. missionaries. This paper relies on archival documents first, to examine the land question and White Fathers-C.M.S. relations in Buha from 1934 to 1959. Second, I intend to demonstrate the fact that land issues remained at the heart of the missionary enterprise in Buha. Both Catholic and Anglican missionaries were determined to have more mission plots for medical, education and religious purposes.展开更多
Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CAS Topic of the Special Issue What are the top questions to...Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CAS Topic of the Special Issue What are the top questions towards better science and innovation and the required data to answer these questions?展开更多
Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding appro...Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding approaches are deficient in representing some complex relations,resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.Methods To this end,we propose MKEAH:Multimodal Knowledge Extraction and Accumulation on Hyperplanes.To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information,two losses are proposed to learn the triplet representations from the complementary views:range loss and orthogonal loss.To interpret the capability of extracting topic-related knowledge,we present the Topic Similarity(TS)between topic and entity-relations.Results Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering.Our model outperformed state-of-the-art methods by 2.12%and 3.24%on two challenging knowledge-request datasets:OK-VQA and KRVQA,respectively.Conclusions The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.展开更多
In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and comput...In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and computing power advance,the issue of increasingly larger models and a growing number of parameters has surfaced.Consequently,model training has become more costly and less efficient.To enhance the efficiency and accuracy of the training process while reducing themodel volume,this paper proposes a first-order pruningmodel PAL-BERT based on the ALBERT model according to the characteristics of question-answering(QA)system and language model.Firstly,a first-order network pruning method based on the ALBERT model is designed,and the PAL-BERT model is formed.Then,the parameter optimization strategy of the PAL-BERT model is formulated,and the Mish function was used as an activation function instead of ReLU to improve the performance.Finally,after comparison experiments with traditional deep learning models TextCNN and BiLSTM,it is confirmed that PALBERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency.Compared with traditional models,PAL-BERT significantly improves the NLP task’s performance.展开更多
The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen...The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.展开更多
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ...Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.展开更多
文摘This paper presents a comparative study of English and Chinese wh-questions and aims at providing explanations of distinctions between English and Chinese wh-questions.The different feature strength of the position C causes the different sentence pattern of Chinese and English wh-questions and the aim is to meet the requirement of feature-checking.The overt whmovement is constrained by some principles.Then Do Chinese learners of English also have this principle in their mind? Through the experiment,the study compared the rates of accuracy of the Chinese group and the native controls.
基金supported in part by JST,CREST to Y.K.Special Coordination Funds for Promoting Science and Technology from the Ministry of Education,Culture,Sports,Science and Technology of the Japanese Government to Y.K.a Grant-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology of the Japanese Government to Y.K.(25460399)
文摘Fatigue is best defined as difficulty in initiating or sustaining voluntary activities, and is thought to be accompanied by deterioration of performance. Fatigue can be caused by many factors such as physical and mental stress, disturbance in the circadian rhythm, and various diseases. For example, following the flu or other types of infections, everyone has experienced a sense of fatigue that can last for days or weeks. The fatigue sensation is thought to be one of the signals for the body to suppress physical activity in order to regain health. The mechanism of induction of the fatigue sensation following viral infection has not been well understood. Although fatigue was once thought to be caused by fever, our recent study with an animal model of viral infection demonstrated that the fatigue sensation is caused not by fever, but rather,
文摘Land was important--in the course of spreading and seeking new converts--for both Missionaries of Africa (White Fathers) and Church Missionary Society (C.M.S.) in Buha, Western Tanzania. This paper examines the land question as one of the challenges that the White Fathers encountered in their attempt to evangelize communities in Western Tanzania. I argue that the land question remained throughout the late-colonial period one of the unresolved issues, and at some mission stations, impeded the activities of the White Fathers and C.M.S. missionaries. This paper relies on archival documents first, to examine the land question and White Fathers-C.M.S. relations in Buha from 1934 to 1959. Second, I intend to demonstrate the fact that land issues remained at the heart of the missionary enterprise in Buha. Both Catholic and Anglican missionaries were determined to have more mission plots for medical, education and religious purposes.
文摘Editors Yang Wang,Xi'an Jiaotong University Dongbo Shi,Shanghai Jiaotong University Ye Sun,University College London Zhesi Shen,National Science Library,CAS Topic of the Special Issue What are the top questions towards better science and innovation and the required data to answer these questions?
基金Supported by National Nature Science Foudation of China(61976160,61906137,61976158,62076184,62076182)Shanghai Science and Technology Plan Project(21DZ1204800)。
文摘Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding approaches are deficient in representing some complex relations,resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.Methods To this end,we propose MKEAH:Multimodal Knowledge Extraction and Accumulation on Hyperplanes.To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information,two losses are proposed to learn the triplet representations from the complementary views:range loss and orthogonal loss.To interpret the capability of extracting topic-related knowledge,we present the Topic Similarity(TS)between topic and entity-relations.Results Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering.Our model outperformed state-of-the-art methods by 2.12%and 3.24%on two challenging knowledge-request datasets:OK-VQA and KRVQA,respectively.Conclusions The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.
基金Supported by Sichuan Science and Technology Program(2021YFQ0003,2023YFSY0026,2023YFH0004).
文摘In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and computing power advance,the issue of increasingly larger models and a growing number of parameters has surfaced.Consequently,model training has become more costly and less efficient.To enhance the efficiency and accuracy of the training process while reducing themodel volume,this paper proposes a first-order pruningmodel PAL-BERT based on the ALBERT model according to the characteristics of question-answering(QA)system and language model.Firstly,a first-order network pruning method based on the ALBERT model is designed,and the PAL-BERT model is formed.Then,the parameter optimization strategy of the PAL-BERT model is formulated,and the Mish function was used as an activation function instead of ReLU to improve the performance.Finally,after comparison experiments with traditional deep learning models TextCNN and BiLSTM,it is confirmed that PALBERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency.Compared with traditional models,PAL-BERT significantly improves the NLP task’s performance.
文摘The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.
基金supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.