Wheat dwarf bunt, caused by Tilletia controversa Kühn (TCK), is an important quarantine wheat disease throughout the world. Based on published research results of the biology and the epidemiology of the disease...Wheat dwarf bunt, caused by Tilletia controversa Kühn (TCK), is an important quarantine wheat disease throughout the world. Based on published research results of the biology and the epidemiology of the disease, the main factors including temperature, humidity, snow cover, and their parameters relating to teliospore germination, infection and epidemics of TCK were determined. The geophytopathological models for the risk analysis of wheat dwarf bunt establishment were modified. Fifty-year meteorologic data from about 500 weather stations in China were used to calculate the probabilities of TCK establishment in different geographic sites with the models. The map that displays the establishment risk of TCK in winter wheat growing regions in China was generated by using geographical information system (GIS). The zones showing high, moderate, low, and very low, including no risk, of TCK establishment accounted for 27.33, 27.69, 38.12, and 6.86% of total winter wheat growing areas in China, respectively. These results will provide useful information to formulate quarantine regulations and wheat importation policy in China.展开更多
We report on pyramiding different disease resistance genes against fungal pathogens in Canadian winter wheat germplasm based on available DNA markers and gene sequences.Genetic resistance represents a safe, economical...We report on pyramiding different disease resistance genes against fungal pathogens in Canadian winter wheat germplasm based on available DNA markers and gene sequences.Genetic resistance represents a safe, economical and ecological method for protecting plants, growers and the health of consumers. Major diseases of wheat on the Canadian Prairies are common bunt, rusts(leaf, stem and stripe) and Fusarium head blight. Over the years markers for resistance genes against these diseases have been identified and used by the international wheat community. We describe markers that we have used to pyramid different resistance genes and indicate their presence in Canadian winter wheat cultivars issued from the winter wheat breeding program at the Agriculture and Agri-Food Canada,Lethbridge Research and Development Centre, the only winter wheat breeding program in Western Canada actively delivering new varieties for all regions of the Canadian Prairies.The sources of resistance and identities of PCR primers and amplification conditions are indicated to enable the transfer and pyramiding of different resistance(R) genes to breeding lines. We conclude by reviewing new tools for identifying R genes in wheat and indicate how mutagenesis and gene editing can help future efforts to extend the protection offered by known R genes.展开更多
A series of replicated growth chamber studies were conducted to determine the effects of soil type and simulated European temperature conditions from fall planting to anthesis in Hungary, United Kingdom, Italy and Nor...A series of replicated growth chamber studies were conducted to determine the effects of soil type and simulated European temperature conditions from fall planting to anthesis in Hungary, United Kingdom, Italy and Norway on the initiation of Tilletia indica teliospore germination on the soil surface. A concurrent study examined effects on teliospore germination of a simulated temperature profile for Ciudad Obregon, Mexico, where Karnal bunt is known to occur. Three soil moisture treatments were tested;40.5% water holding capacity (WHC), 16.2% WHC and weekly fluctuation of soil WHC. Results suggest that soil type would not have a significant effect on germination during the cropping season. Under all conditions tested, some portion of the teliospore population remained dormant but viable throughout the entire season. In comparing Mexican and Hungarian temperature profiles, highest soil surface germination for the Hungarian profile was at 40.5% WHC during the first 30 days of the simulation (30 days after planting date). The highest germination for the Mexican profile was at the 16.2% WHC during the last 30 days of the study (time of anthesis).展开更多
基金supported by the National Basic Research and Development Program of China (2009CB119200,2002CB111405)the project from Ministry of Agriculture of China
文摘Wheat dwarf bunt, caused by Tilletia controversa Kühn (TCK), is an important quarantine wheat disease throughout the world. Based on published research results of the biology and the epidemiology of the disease, the main factors including temperature, humidity, snow cover, and their parameters relating to teliospore germination, infection and epidemics of TCK were determined. The geophytopathological models for the risk analysis of wheat dwarf bunt establishment were modified. Fifty-year meteorologic data from about 500 weather stations in China were used to calculate the probabilities of TCK establishment in different geographic sites with the models. The map that displays the establishment risk of TCK in winter wheat growing regions in China was generated by using geographical information system (GIS). The zones showing high, moderate, low, and very low, including no risk, of TCK establishment accounted for 27.33, 27.69, 38.12, and 6.86% of total winter wheat growing areas in China, respectively. These results will provide useful information to formulate quarantine regulations and wheat importation policy in China.
基金Funding from the Agriculture and Agri-Food Canada Peer Review and Growing Forward programs,and Ducks Unlimited Canada is greatly appreciated
文摘We report on pyramiding different disease resistance genes against fungal pathogens in Canadian winter wheat germplasm based on available DNA markers and gene sequences.Genetic resistance represents a safe, economical and ecological method for protecting plants, growers and the health of consumers. Major diseases of wheat on the Canadian Prairies are common bunt, rusts(leaf, stem and stripe) and Fusarium head blight. Over the years markers for resistance genes against these diseases have been identified and used by the international wheat community. We describe markers that we have used to pyramid different resistance genes and indicate their presence in Canadian winter wheat cultivars issued from the winter wheat breeding program at the Agriculture and Agri-Food Canada,Lethbridge Research and Development Centre, the only winter wheat breeding program in Western Canada actively delivering new varieties for all regions of the Canadian Prairies.The sources of resistance and identities of PCR primers and amplification conditions are indicated to enable the transfer and pyramiding of different resistance(R) genes to breeding lines. We conclude by reviewing new tools for identifying R genes in wheat and indicate how mutagenesis and gene editing can help future efforts to extend the protection offered by known R genes.
文摘A series of replicated growth chamber studies were conducted to determine the effects of soil type and simulated European temperature conditions from fall planting to anthesis in Hungary, United Kingdom, Italy and Norway on the initiation of Tilletia indica teliospore germination on the soil surface. A concurrent study examined effects on teliospore germination of a simulated temperature profile for Ciudad Obregon, Mexico, where Karnal bunt is known to occur. Three soil moisture treatments were tested;40.5% water holding capacity (WHC), 16.2% WHC and weekly fluctuation of soil WHC. Results suggest that soil type would not have a significant effect on germination during the cropping season. Under all conditions tested, some portion of the teliospore population remained dormant but viable throughout the entire season. In comparing Mexican and Hungarian temperature profiles, highest soil surface germination for the Hungarian profile was at 40.5% WHC during the first 30 days of the simulation (30 days after planting date). The highest germination for the Mexican profile was at the 16.2% WHC during the last 30 days of the study (time of anthesis).
基金National Basic Research and Development Program of China("973"Program:2002CB111406)National Basic Researchand Development Program of China(2002CB111406)Program for Changjiang Scholars and Innovative ResearchTeam in University(IRT1042)
文摘小麦矮腥黑穗病菌(Tilletia controversa Kühn,简称TCK)是小麦上的一种重要检疫性真菌。本研究利用内部简单重复序列(Inter-simple sequence repeat,ISSR)技术研究TCK及其近缘种的DNA多态性,开发了一种可靠而简单的方法用于TCK的分子鉴定。用ISSR引物P4从TCK中扩增出一条1 113 bp的特异性条带,据此设计了一对特异性引物TCKF/TCKR,在12个TCK菌株中均能扩增得到一条882 bp的特异性条带,而其他近缘种包括小麦网腥黑穗病菌(T.caries)和小麦光腥黑穗病菌(T.foetida)及相关黑粉菌的14个菌株均无扩增条带。用该特异性引物检测TCK的下限为25μL反应体系中可检测到1 ng DNA模板。本研究开发的种特异性引物,可将TCK与其形态上相似的近缘种尤其是小麦网腥黑穗病菌准确区分开,本研究基于ISSR标记建立的小麦矮腥黑穗病菌的分子鉴定方法为腥黑粉菌的检疫提供了一种便捷的方法,是对现有分子鉴定方法的一个补充。