Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)...Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recommend that the current sowing date be delayed from 22 or 23 September to 1 October.展开更多
<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font...<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>展开更多
Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the ...Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the 2013-2014 and 2014-2015 growing seasons, two winter wheat cultivars were sown on three dates(early sowing on October 1, normal so,wing on October8, and late sowing on October 15) to investigate the responses of lodging resistance, grain yield,and NUE to sowing date. No significant differences in lodging resistance, grain yield, or NUE between early and normal sowing were observed. Averaging over the two cultivars and years,postponing the sowing date significantly increased lodging resistance by 53.6% and 49.6%compared with that following early and normal sowing, respectively. Lodging resistance was improved mainly through a reduction in the culm height at the center of gravity and an increase in the tensile strength of the base internode. Late sowing resulted in similar grain yield as well as kernel weight and number of kernels per square meter, compared to early and normal sowing.Averaging over the two cultivars and years, delayed sowing resulted in a reduction in nitrogen uptake efficiency(UPE) by 11.0% and 9.9% compared to early and normal sowing, respectively,owing to reduced root length density and dry matter accumulation before anthesis. An average increase in nitrogen utilization efficiency(UTE) of 12.9% and 11.2% compared to early and normal sowing, respectively, was observed with late sowing owing to a reduction in the grain nitrogen concentration. The increase in UTE offset the reduction in UPE, resulting in equal NUEs among all sowing dates. Thus, sowing later than normal could increase lodging resistance while maintaining grain yield and NUE.展开更多
Durum wheat (Triticum durum Desf.) is a market class of wheat subject to price discounts in the marketplace if quality standards are not met. This study was conducted in order to determine how certain agronomic practi...Durum wheat (Triticum durum Desf.) is a market class of wheat subject to price discounts in the marketplace if quality standards are not met. This study was conducted in order to determine how certain agronomic practices might impact durum wheat quality. The effects of planting date (PD), cultivar, and seeding rate on agronomic and semolina quality traits were investigated in field trials conducted near Hettinger and Minot, ND in 2014 and 2015. The interaction of PD and cultivar was significant for many of the traits evaluated. There was a significant PD X cultivar interaction or PD and cultivar effect for yield in all environments. Planting date X cultivar interacted for test weight at all environments. In general, a delay in PD resulted in a significant decrease in yield and test weight for all cultivars. However, Carpio yielded more than other cultivars in high yielding environments while the yield and test weight of Joppa was more adversely affected by delays in PD. Seeding rate did not have a consistent effect on any agronomic or quality trait. Protein content, kernel yellow pigment content, falling number (FN), and vitreous kernels were more dependent on cultivar, regardless of PD and environment. Semolina extraction, gluten index (GI), and wet gluten (WG) values tended to decrease with a delay in PD. These data continue to support cultivar selection as a critical component for obtaining high-yielding, high-quality durum wheat. However, PD and environment can impact certain agronomic and end-use traits, regardless of cultivar grown.展开更多
A field experiment was conducted to study the growth and productivity of wheat as affected by row spacing and direction of sowing at Rampur, Chitwan, Nepal during the 2007-2008 wheat growing season. The experiment was...A field experiment was conducted to study the growth and productivity of wheat as affected by row spacing and direction of sowing at Rampur, Chitwan, Nepal during the 2007-2008 wheat growing season. The experiment was carried out in 3-factors factorial randomized complete block design comprising two varieties (Gautam and BL-2800), three row spacings (15, 20 and25 cm) and two row directions of sowing (east-west and north-south). The effects of variety and row direction of sowing on grain yield were significant (p < 0.05), but the grain yield was not affected by the row spacing treatment. BL-2800 variety produced higher grain yield (3.53 t·ha-1) as compared to Gautam (3.11 t·ha-1). Both wheat varieties yielded about 11% higher (p < 0.05) grain in the north-south sowing as compared to the eastwest sowing.展开更多
Labor scarcity requires double-season rice to be planted by direct seeding as an alternative to transplanting. Only ultrashort-duration varieties can be used in direct-seeded, double-season rice(DSD) in central China ...Labor scarcity requires double-season rice to be planted by direct seeding as an alternative to transplanting. Only ultrashort-duration varieties can be used in direct-seeded, double-season rice(DSD) in central China where thermal time is limited. Whether ultrashort-duration varieties grown in DSD can be as productive and efficient in nitrogen(N) use as transplanted double-season rice(TPD) remains unclear. Field experiments were conducted in Hubei province, central China with two establishment methods(DSD,TPD) and three N rates in the early and late seasons of 2017 and 2018. Nitrogen treatments included zero-N control(N0), total N rate of 60 kg N ha;with equal splits at basal, midtillering, and panicle initiation(N1), and weekly N application at 15 kg ha;from seeding/transplanting to heading(N2). Both early-and late-season rice under DSD matured within 95 days, on average 9 days shorter than rice under TPD. The grain yield of DSD was comparable to or higher than that of TDP in both seasons, although the daily yield was significantly higher under DSD than under TDP. Before heading, DSD had higher leaf area,stem number, intercepted radiation, and radiation use efficiency than TPD, which compensated for the negative effect of short growth duration on biomass production. Total dry weight and harvest index under DSD were comparable to or higher than those under TDP. In general, the recovery efficiency of fertilizer-N under DSD was higher than that under TPD, but the reverse was true for physiological N use efficiency. Thus, there was no significant difference in agronomic N use efficiency between DSD and TPD. These results suggested that DSD with ultrashort-duration varieties is a promising alternative to TPD in central China for maintaining high grain yield and N fertilizer use efficiency with less labor input.展开更多
基金supported by the earmarked fund for China Agriculture Research System (CARS-0301-24)the National Natural Science Foundation of China (31771727)+5 种基金the National Key Technology R&D Program of China (2015BAD23B04-2)The research project was also supported by the Shanxi Scholarship Council,China (2015Key 4)the Shanxi Science and Technology Innovation Team Project,China (201605D131041)the Jinzhong Science and Technology Plan Project,China (Y172007-2)the Sanjin Scholar Support Special Funds,Chinathe Special Fund for Agro-scientific Research in the Public Interest,China (201503120)
文摘Sowing date and seeding rate are critical for productivity of winter wheat(Triticum aestivum L.).A three-year field experiment was conducted with three sowing dates(20 September(SD1),1 October(SD2),and 10 October(SD3)) and three seeding rates(SR67.5,SR90,and SR112.5) to determine suitable sowing date and seeding rate for high wheat yield.A large seasonal variation in accumulated temperature from sowing to winter dormancy was observed among three growing seasons.Suitable sowing dates for strong seedlings before winter varied with the seasons,that was SD2 in 2012–2013,SD3 in 2013–2014,and SD2 as well as SD1 in 2014–2015.Seasonal variation in precipitation during summer fallow also had substantial effects on soil water storage,and consequently influenced grain yield through soil water consumption from winter dormancy to maturity stages.Lower consumption of soil water from winter dormancy to booting stages could make more water available for productive growth from anthesis to maturity stages,leading to higher grain yield.SD2 combined with SR90 had the lowest soil water consumption from winter dormancy to booting stages in 2012–2013 and 2014–2015; while in 2013–2014,it was close to that with SR67.5 or SR112.5.For productive growth from anthesis to maturity stages,SD2 with SR90 had the highest soil water consumption in all three seasons.The highest water consumption in the productive growth period resulted in the best grain yield in both low and high rainfall years.Ear number largely contributed to the seasonal variation in grain yield,while grain number per ear and 1 000-grain weight also contributed to grain yield,especially when soil water storage was high.Our results indicate that sowing date and seeding rate affect grain yield through seedling development before winter and also affect soil water consumption in different growth periods.By selecting the suitable sowing date(1 October) in combination with the proper seeding rate of 90 kg ha–1,the best yield was achieved.Based on these results,we recommend that the current sowing date be delayed from 22 or 23 September to 1 October.
文摘<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>
基金supported by the National Basic Research Program of China (2015CB150404)Shandong Province Higher Education Science and Technology Program (J15LF07)Youth Science and Technology Innovation Foundation of Shandong Agricultural University (2014-2)
文摘Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the 2013-2014 and 2014-2015 growing seasons, two winter wheat cultivars were sown on three dates(early sowing on October 1, normal so,wing on October8, and late sowing on October 15) to investigate the responses of lodging resistance, grain yield,and NUE to sowing date. No significant differences in lodging resistance, grain yield, or NUE between early and normal sowing were observed. Averaging over the two cultivars and years,postponing the sowing date significantly increased lodging resistance by 53.6% and 49.6%compared with that following early and normal sowing, respectively. Lodging resistance was improved mainly through a reduction in the culm height at the center of gravity and an increase in the tensile strength of the base internode. Late sowing resulted in similar grain yield as well as kernel weight and number of kernels per square meter, compared to early and normal sowing.Averaging over the two cultivars and years, delayed sowing resulted in a reduction in nitrogen uptake efficiency(UPE) by 11.0% and 9.9% compared to early and normal sowing, respectively,owing to reduced root length density and dry matter accumulation before anthesis. An average increase in nitrogen utilization efficiency(UTE) of 12.9% and 11.2% compared to early and normal sowing, respectively, was observed with late sowing owing to a reduction in the grain nitrogen concentration. The increase in UTE offset the reduction in UPE, resulting in equal NUEs among all sowing dates. Thus, sowing later than normal could increase lodging resistance while maintaining grain yield and NUE.
文摘Durum wheat (Triticum durum Desf.) is a market class of wheat subject to price discounts in the marketplace if quality standards are not met. This study was conducted in order to determine how certain agronomic practices might impact durum wheat quality. The effects of planting date (PD), cultivar, and seeding rate on agronomic and semolina quality traits were investigated in field trials conducted near Hettinger and Minot, ND in 2014 and 2015. The interaction of PD and cultivar was significant for many of the traits evaluated. There was a significant PD X cultivar interaction or PD and cultivar effect for yield in all environments. Planting date X cultivar interacted for test weight at all environments. In general, a delay in PD resulted in a significant decrease in yield and test weight for all cultivars. However, Carpio yielded more than other cultivars in high yielding environments while the yield and test weight of Joppa was more adversely affected by delays in PD. Seeding rate did not have a consistent effect on any agronomic or quality trait. Protein content, kernel yellow pigment content, falling number (FN), and vitreous kernels were more dependent on cultivar, regardless of PD and environment. Semolina extraction, gluten index (GI), and wet gluten (WG) values tended to decrease with a delay in PD. These data continue to support cultivar selection as a critical component for obtaining high-yielding, high-quality durum wheat. However, PD and environment can impact certain agronomic and end-use traits, regardless of cultivar grown.
文摘A field experiment was conducted to study the growth and productivity of wheat as affected by row spacing and direction of sowing at Rampur, Chitwan, Nepal during the 2007-2008 wheat growing season. The experiment was carried out in 3-factors factorial randomized complete block design comprising two varieties (Gautam and BL-2800), three row spacings (15, 20 and25 cm) and two row directions of sowing (east-west and north-south). The effects of variety and row direction of sowing on grain yield were significant (p < 0.05), but the grain yield was not affected by the row spacing treatment. BL-2800 variety produced higher grain yield (3.53 t·ha-1) as compared to Gautam (3.11 t·ha-1). Both wheat varieties yielded about 11% higher (p < 0.05) grain in the north-south sowing as compared to the eastwest sowing.
基金supported by the National Natural Science Foundation of China(31971845,32061143038)the China Postdoctoral Science Foundation(2021 M691179)+3 种基金the China Agriculture Research System(CARS-01-20)the Program of Introducing Talents of Discipline to Universities in China(the 111 Project no.B14032)the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1247)a grant from the Bill and Melinda Gates Foundation(OPP51587)。
文摘Labor scarcity requires double-season rice to be planted by direct seeding as an alternative to transplanting. Only ultrashort-duration varieties can be used in direct-seeded, double-season rice(DSD) in central China where thermal time is limited. Whether ultrashort-duration varieties grown in DSD can be as productive and efficient in nitrogen(N) use as transplanted double-season rice(TPD) remains unclear. Field experiments were conducted in Hubei province, central China with two establishment methods(DSD,TPD) and three N rates in the early and late seasons of 2017 and 2018. Nitrogen treatments included zero-N control(N0), total N rate of 60 kg N ha;with equal splits at basal, midtillering, and panicle initiation(N1), and weekly N application at 15 kg ha;from seeding/transplanting to heading(N2). Both early-and late-season rice under DSD matured within 95 days, on average 9 days shorter than rice under TPD. The grain yield of DSD was comparable to or higher than that of TDP in both seasons, although the daily yield was significantly higher under DSD than under TDP. Before heading, DSD had higher leaf area,stem number, intercepted radiation, and radiation use efficiency than TPD, which compensated for the negative effect of short growth duration on biomass production. Total dry weight and harvest index under DSD were comparable to or higher than those under TDP. In general, the recovery efficiency of fertilizer-N under DSD was higher than that under TPD, but the reverse was true for physiological N use efficiency. Thus, there was no significant difference in agronomic N use efficiency between DSD and TPD. These results suggested that DSD with ultrashort-duration varieties is a promising alternative to TPD in central China for maintaining high grain yield and N fertilizer use efficiency with less labor input.